现在开始将探究Redis的5种数据结构,我们会解释每种数据结构都是什么,包含了什么有效的方法(Method),以及你能用这些数据结构处理哪些类型的特性和数据。
目前为止,我们所知道的Redis构成仅包括命令、关键字和值,还没有接触到关于数据结构的具体概念。当我们使用`set`命令时,Redis是怎么知道我们是在使用哪个数据结构?其解决方法是,每个命令都相对应于一种特定的数据结构。例如,当你使用`set`命令,你就是将值存储到一个字符串数据结构里。而当你使用`hset`命令,你就是将值存储到一个散列数据结构里。考虑到Redis的关键字集很小,这样的机制具有相当的可管理性。
[Redis的网站](http://redis.io/commands)里有着非常优秀的参考文档,没有任何理由去重造轮子。但为了搞清楚这些数据结构的作用,我们将会覆盖那些必须知道的重要命令。
没有什么事情比高兴的玩和试验有趣的东西来得更重要的了。在任何时候,你都能通过键入`flushdb`命令将你数据库里的所有值清除掉,因此,不要再那么害羞了,去尝试做些疯狂的事情吧!
## 字符串(Strings)
在Redis里,字符串是最基本的数据结构。当你在思索着关键字-值对时,你就是在思索着字符串数据结构。不要被名字给搞混了,如之前说过的,你的值可以是任何东西。我更喜欢将他们称作“标量”(Scalars),但也许只有我才这样想。
我们已经看到了一个常见的字符串使用案例,即通过关键字存储对象的实例。有时候,你会频繁地用到这类操作:
~~~
set users:leto "{name: leto, planet: dune, likes: [spice]}"
~~~
除了这些外,Redis还有一些常用的操作。例如,`strlen `能用来获取一个关键字对应值的长度;`getrange `将返回指定范围内的关键字对应值;`append `会将value附加到已存在的关键字对应值中(如果该关键字并不存在,则会创建一个新的关键字-值对)。不要犹豫,去试试看这些命令吧。下面是我得到的:
~~~
> strlen users:leto
(integer) 42
> getrange users:leto 27 40
"likes: [spice]"
> append users:leto " OVER 9000!!"
(integer) 54
~~~
现在你可能会想,这很好,但似乎没有什么意义。你不能有效地提取出一段范围内的JSON文件,或者为其附加一些值。你是对的,这里的经验是,一些命令,尤其是关于字符串数据结构的,只有在给定了明确的数据类型后,才会有实际意义。
之前我们知道了,Redis不会去关注你的值是什么东西。通常情况下,这没有错。然而,一些字符串命令是专门为一些类型或值的结构而设计的。作为一个有些含糊的用例,我们可以看到,对于一些自定义的空间效率很高的(space-efficient)串行化对象,`append`和`getrange`命令将会很有用。对于一个更为具体的用例,我们可以再看一下`incr`、`incrby`、`decr`和`decrby`命令。这些命令会增长或者缩减一个字符串数据结构的值:
~~~
> incr stats:page:about
(integer) 1
> incr stats:page:about
(integer) 2
> incrby ratings:video:12333 5
(integer) 5
> incrby ratings:video:12333 3
(integer) 8
~~~
由此你可以想象到,Redis的字符串数据结构能很好地用于分析用途。你还可以去尝试增长`users:leto`(一个不是整数的值),然后看看会发生什么(应该会得到一个错误)。
更为进阶的用例是`setbit`和`getbit`命令。“今天我们有多少个独立用户访问”是个在Web应用里常见的问题,有一篇[精彩的博文](http://blog.getspool.com/2011/11/29/fast-easy-realtime-metrics-using-redis-bitmaps/),在里面可以看到Spool是如何使用这两个命令有效地解决此问题。对于1.28亿个用户,一部笔记本电脑在不到50毫秒的时间里就给出了答复,而且只用了16MB的存储空间。
最重要的事情不是在于你是否明白位图(Bitmaps)的工作原理,或者Spool是如何去使用这些命令,而是应该要清楚Redis的字符串数据结构比你当初所想的要有用许多。然而,最常见的应用案例还是上面我们给出的:存储对象(简单或复杂)和计数。同时,由于通过关键字来获取一个值是如此之快,字符串数据结构很常被用来缓存数据。
## 散列(Hashes)
我们已经知道把Redis称为一种关键字-值型存储是不太准确的,散列数据结构是一个很好的例证。你会看到,在很多方面里,散列数据结构很像字符串数据结构。两者显著的区别在于,散列数据结构提供了一个额外的间接层:一个域(Field)。因此,散列数据结构中的`set`和`get`是:
~~~
hset users:goku powerlevel 9000
hget users:goku powerlevel
~~~
相关的操作还包括在同一时间设置多个域、同一时间获取多个域、获取所有的域和值、列出所有的域或者删除指定的一个域:
~~~
hmset users:goku race saiyan age 737
hmget users:goku race powerlevel
hgetall users:goku
hkeys users:goku
hdel users:goku age
~~~
如你所见,散列数据结构比普通的字符串数据结构具有更多的可操作性。我们可以使用一个散列数据结构去获得更精确的描述,是存储一个用户,而不是一个序列化对象。从而得到的好处是能够提取、更新和删除具体的数据片段,而不必去获取或写入整个值。
对于散列数据结构,可以从一个经过明确定义的对象的角度来考虑,例如一个用户,关键之处在于要理解他们是如何工作的。从性能上的原因来看,这是正确的,更具粒度化的控制可能会相当有用。在下一章我们将会看到,如何用散列数据结构去组织你的数据,使查询变得更为实效。在我看来,这是散列真正耀眼的地方。
## 列表(Lists)
对于一个给定的关键字,列表数据结构让你可以存储和处理一组值。你可以添加一个值到列表里、获取列表的第一个值或最后一个值以及用给定的索引来处理值。列表数据结构维护了值的顺序,提供了基于索引的高效操作。为了跟踪在网站里注册的最新用户,我们可以维护一个`newusers`的列表:
~~~
lpush newusers goku
ltrim newusers 0 50
~~~
(译注:`ltrim`命令的具体构成是`LTRIM Key start stop`。要理解`ltrim`命令,首先要明白Key所存储的值是一个列表,理论上列表可以存放任意个值。对于指定的列表,根据所提供的两个范围参数start和stop,`ltrim`命令会将指定范围外的值都删除掉,只留下范围内的值。)
首先,我们将一个新用户推入到列表的前端,然后对列表进行调整,使得该列表只包含50个最近被推入的用户。这是一种常见的模式。`ltrim`是一个具有O(N)时间复杂度的操作,N是被删除的值的数量。从上面的例子来看,我们总是在插入了一个用户后再进行列表调整,实际上,其将具有O(1)的时间复杂度(因为N将永远等于1)的常数性能。
这是我们第一次看到一个关键字的对应值索引另一个值。如果我们想要获取最近的10个用户的详细资料,我们可以运行下面的组合操作:
~~~
keys = redis.lrange('newusers', 0, 10)
redis.mget(*keys.map {|u| "users:#{u}"})
~~~
我们之前谈论过关于多次往返数据的模式,上面的两行Ruby代码为我们进行了很好的演示。
当然,对于存储和索引关键字的功能,并不是只有列表数据结构这种方式。值可以是任意的东西,你可以使用列表数据结构去存储日志,也可以用来跟踪用户浏览网站时的路径。如果你过往曾构建过游戏,你可能会使用列表数据结构去跟踪用户的排队活动。
## 集合(Sets)
集合数据结构常常被用来存储只能唯一存在的值,并提供了许多的基于集合的操作,例如并集。集合数据结构没有对值进行排序,但是其提供了高效的基于值的操作。使用集合数据结构的典型用例是朋友名单的实现:
~~~
sadd friends:leto ghanima paul chani jessica
sadd friends:duncan paul jessica alia
~~~
不管一个用户有多少个朋友,我们都能高效地(O(1)时间复杂度)识别出用户X是不是用户Y的朋友:
~~~
sismember friends:leto jessica
sismember friends:leto vladimir
~~~
而且,我们可以查看两个或更多的人是不是有共同的朋友:
~~~
sinter friends:leto friends:duncan
~~~
甚至可以在一个新的关键字里存储结果:
~~~
sinterstore friends:leto_duncan friends:leto friends:duncan
~~~
有时候需要对值的属性进行标记和跟踪处理,但不能通过简单的复制操作完成,集合数据结构是解决此类问题的最好方法之一。当然,对于那些需要运用集合操作的地方(例如交集和并集),集合数据结构就是最好的选择。
## 分类集合(Sorted Sets)
最后也是最强大的数据结构是分类集合数据结构。如果说散列数据结构类似于字符串数据结构,主要区分是域(field)的概念;那么分类集合数据结构就类似于集合数据结构,主要区分是标记(score)的概念。标记提供了排序(sorting)和秩划分(ranking)的功能。如果我们想要一个秩分类的朋友名单,可以这样做:
~~~
zadd friends:duncan 70 ghanima 95 paul 95 chani 75 jessica 1 vladimir
~~~
对于`duncan`的朋友,要怎样计算出标记(score)为90或更高的人数?
~~~
zcount friends:duncan 90 100
~~~
如何获取`chani`在名单里的秩(rank)?
~~~
zrevrank friends:duncan chani
~~~
(译注:`zrank`命令的具体构成是`ZRANK Key menber`,要知道Key存储的Sorted Set默认是根据Score对各个menber进行升序的排列,该命令就是用来获取menber在该排列里的次序,这就是所谓的秩。)
我们使用了`zrevrank`命令而不是`zrank`命令,这是因为Redis的默认排序是从低到高,但是在这个例子里我们的秩划分是从高到低。对于分类集合数据结构,最常见的应用案例是用来实现排行榜系统。事实上,对于一些基于整数排序,且能以标记(score)来进行有效操作的东西,使用分类集合数据结构来处理应该都是不错的选择。
## 小结
对于Redis的5种数据结构,我们进行了高层次的概述。一件有趣的事情是,相对于最初构建时的想法,你经常能用Redis创造出一些更具实效的事情。对于字符串数据结构和分类集合数据结构的使用,很有可能存在一些构建方法是还没有人想到的。当你理解了那些常用的应用案例后,你将发现Redis对于许多类型的问题,都是很理想的选择。还有,不要因为Redis展示了5种数据结构和相应的各种方法,就认为你必须要把所有的东西都用上。只使用一些命令去构建一个特性是很常见的。