💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
Spark也支持将数据集放入集群的内存中缓存起来. 当数据重复访问时特别有用, 比如查询一个小的 “hot”数据集或者运行一个交互式算法PageRank. 看一个简单的例子, 我们把上面的linesWithSpark数据集缓存起来: ~~~ scala> linesWithSpark.cache() res7: spark.RDD[String] = spark.FilteredRDD@17e51082 scala> linesWithSpark.count() res8: Long = 15 scala> linesWithSpark.count() res9: Long = 15 ~~~ 当然使用Spark缓存一个100行的文本文件看起来有些傻,我们只是做个示范。 你可以将它用在非常大的数据集上,即使它们可能横跨几十甚至上百个节点。你也可以使用bin/spark-shell交互式实现此功能, 就像开发指南中描述的那样。