ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
   六种方法分别是:基于RGB分割,基于RG同道的分割,ycrcb+otsu(ostu可以参考http://blog.csdn.net/onezeros/article/details/6136770, http://wenku.baidu.com/view/05c47e03bed5b9f3f90f1ce4.html),YCrCb空间,YUV空间,HSV空间。下一步就是通过JNI将这些检测移植到android上,最终目标是实现Android智能手机利用掌纹开关机。 环境是在qt下,.pro文件里增加如下代码: ~~~ INCLUDEPATH += /usr/include/opencv LIBS += /usr/lib/libcv.so \ /usr/lib/libcvaux.so \ /usr/lib/libcxcore.so \ /usr/lib/libhighgui.so \ /usr/lib/libml.so ~~~ 请看源码: ~~~ #include <iostream> #include "cv.h" #include "highgui.h" void SkinRGB(IplImage* rgb,IplImage* _dst); void cvSkinRG(IplImage* rgb,IplImage* gray); void cvThresholdOtsu(IplImage* src, IplImage* dst); void cvSkinOtsu(IplImage* src, IplImage* dst); void cvSkinYCbCr(IplImage* img, IplImage* mask); void cvSkinYUV(IplImage* src,IplImage* dst); void cvSkinHSV(IplImage* src,IplImage* dst); using namespace std; // skin region location using rgb limitation int main() { IplImage *srcImg = cvLoadImage("/home/yan/download/testPalm4.jpg", 1); IplImage *dstRGB = cvCreateImage(cvGetSize(srcImg), 8, 3); IplImage *dstRG = cvCreateImage(cvGetSize(srcImg), 8, 1); IplImage* dst_crotsu=cvCreateImage(cvGetSize(srcImg),8,1); IplImage* dst_ycbcr=cvCreateImage(cvGetSize(srcImg),8,1); IplImage* dst_yuv=cvCreateImage(cvGetSize(srcImg),8,3); IplImage* dst_hsv=cvCreateImage(cvGetSize(srcImg),8,3); SkinRGB(srcImg, dstRGB); cvSaveImage("/home/yan/download/1_dstRGB.jpg", dstRGB); cvSkinRG(srcImg, dstRG); cvSaveImage("/home/yan/download/2_dstRG.jpg", dstRG); cvSkinOtsu(srcImg, dst_crotsu); cvSaveImage("/home/yan/download/3_dst_crotsu.jpg", dst_crotsu); cvSkinYCbCr(srcImg, dst_ycbcr); cvSaveImage("/home/yan/download/4_dst_ycbcr.jpg", dst_ycbcr); cvSkinYUV(srcImg, dst_yuv); cvSaveImage("/home/yan/download/5_dst_yuv.jpg", dst_yuv); cvSkinHSV(srcImg, dst_hsv); cvSaveImage("/home/yan/download/6_dst_hsv.jpg", dst_hsv); cvNamedWindow("srcImg", 1); cvShowImage("srcImg", srcImg); cvNamedWindow("dstRGB", 1); cvShowImage("dstRGB", dstRGB); cvNamedWindow("dstRG", 1); cvShowImage("dstRG", dstRG); cvNamedWindow("dstcrotsu", 1); cvShowImage("dstcrotsu", dst_crotsu); cvNamedWindow("dst_ycbcr", 1); cvShowImage("dst_ycbcr", dst_ycbcr); cvNamedWindow("dst_yuv", 1); cvShowImage("dst_yuv", dst_yuv); cvNamedWindow("dst_hsv", 1); cvShowImage("dst_hsv", dst_hsv); cvWaitKey(0); cout << "Hello World!" << endl; return 0; } void SkinRGB(IplImage* rgb,IplImage* _dst) { cout<<"111"<<endl; assert(rgb->nChannels==3&& _dst->nChannels==3); static const int R=2; static const int G=1; static const int B=0; IplImage* dst=cvCreateImage(cvGetSize(_dst),8,3); cvZero(dst); for (int h=0;h<rgb->height;h++) { unsigned char* prgb=(unsigned char*)rgb->imageData+h*rgb->widthStep; unsigned char* pdst=(unsigned char*)dst->imageData+h*dst->widthStep; for (int w=0;w<rgb->width;w++) { if ((prgb[R]>95 && prgb[G]>40 && prgb[B]>20 && prgb[R]-prgb[B]>15 && prgb[R]-prgb[G]>15/*&& !(prgb[R]>170&&prgb[G]>170&&prgb[B]>170)*/)||//uniform illumination (prgb[R]>200 && prgb[G]>210 && prgb[B]>170 && abs(prgb[R]-prgb[B])<=15 && prgb[R]>prgb[B]&& prgb[G]>prgb[B])//lateral illumination ) { memcpy(pdst,prgb,3); } prgb+=3; pdst+=3; } } cvCopyImage(dst,_dst); cvReleaseImage(&dst); } void cvSkinRG(IplImage* rgb,IplImage* gray) { assert(rgb->nChannels==3&&gray->nChannels==1); const int R=2; const int G=1; const int B=0; double Aup=-1.8423; double Bup=1.5294; double Cup=0.0422; double Adown=-0.7279; double Bdown=0.6066; double Cdown=0.1766; for (int h=0; h<rgb->height; h++) { unsigned char* pGray=(unsigned char*)gray->imageData+h*gray->widthStep; unsigned char* pRGB=(unsigned char* )rgb->imageData+h*rgb->widthStep; for (int w=0; w<rgb->width; w++) { int s=pRGB[R]+pRGB[G]+pRGB[B]; double r=(double)pRGB[R]/s; double g=(double)pRGB[G]/s; double Gup=Aup*r*r+Bup*r+Cup; double Gdown=Adown*r*r+Bdown*r+Cdown; double Wr=(r-0.33)*(r-0.33)+(g-0.33)*(g-0.33); if (g<Gup && g>Gdown && Wr>0.004) { *pGray=255; } else { *pGray=0; } pGray++; pRGB+=3; } } } void cvThresholdOtsu(IplImage* src, IplImage* dst) { int height=src->height; int width=src->width; //histogram float histogram[256]= {0}; for(int i=0; i<height; i++) { unsigned char* p=(unsigned char*)src->imageData+src->widthStep*i; for(int j=0; j<width; j++) { histogram[*p++]++; } } //normalize histogram int size=height*width; for(int i=0; i<256; i++) { histogram[i]=histogram[i]/size; } //average pixel value float avgValue=0; for(int i=0; i<256; i++) { avgValue+=i*histogram[i]; } int threshold; float maxVariance=0; float w=0,u=0; for(int i=0; i<256; i++) { w+=histogram[i]; u+=i*histogram[i]; float t=avgValue*w-u; float variance=t*t/(w*(1-w)); if(variance>maxVariance) { maxVariance=variance; threshold=i; } } cvThreshold(src,dst,threshold,255,CV_THRESH_BINARY); } void cvSkinOtsu(IplImage* src, IplImage* dst) { assert(dst->nChannels==1&& src->nChannels==3); IplImage* ycrcb=cvCreateImage(cvGetSize(src),8,3); IplImage* cr=cvCreateImage(cvGetSize(src),8,1); cvCvtColor(src,ycrcb,CV_BGR2YCrCb); cvSplit(ycrcb,0,cr,0,0); cvThresholdOtsu(cr,cr); cvCopyImage(cr,dst); cvReleaseImage(&cr); cvReleaseImage(&ycrcb); } void cvSkinYCbCr(IplImage* img, IplImage* mask) { CvSize imageSize = cvSize(img->width, img->height); IplImage *imgY = cvCreateImage(imageSize, IPL_DEPTH_8U, 1); IplImage *imgCr = cvCreateImage(imageSize, IPL_DEPTH_8U, 1); IplImage *imgCb = cvCreateImage(imageSize, IPL_DEPTH_8U, 1); IplImage *imgYCrCb = cvCreateImage(imageSize, img->depth, img->nChannels); cvCvtColor(img,imgYCrCb,CV_BGR2YCrCb); cvSplit(imgYCrCb, imgY, imgCr, imgCb, 0); int y, cr, cb, l, x1, y1, value; unsigned char *pY, *pCr, *pCb, *pMask; pY = (unsigned char *)imgY->imageData; pCr = (unsigned char *)imgCr->imageData; pCb = (unsigned char *)imgCb->imageData; pMask = (unsigned char *)mask->imageData; cvSetZero(mask); l = img->height * img->width; for (int i = 0; i < l; i++){ y = *pY; cr = *pCr; cb = *pCb; cb -= 109; cr -= 152 ; x1 = (819*cr-614*cb)/32 + 51; y1 = (819*cr+614*cb)/32 + 77; x1 = x1*41/1024; y1 = y1*73/1024; value = x1*x1+y1*y1; if(y<100) (*pMask)=(value<700) ? 255:0; else (*pMask)=(value<850)? 255:0; pY++; pCr++; pCb++; pMask++; } cvReleaseImage(&imgY); cvReleaseImage(&imgCr); cvReleaseImage(&imgCb); cvReleaseImage(&imgYCrCb); } void cvSkinYUV(IplImage* src,IplImage* dst) { IplImage* ycrcb=cvCreateImage(cvGetSize(src),8,3); //IplImage* cr=cvCreateImage(cvGetSize(src),8,1); //IplImage* cb=cvCreateImage(cvGetSize(src),8,1); cvCvtColor(src,ycrcb,CV_BGR2YCrCb); //cvSplit(ycrcb,0,cr,cb,0); static const int Cb=2; static const int Cr=1; static const int Y=0; //IplImage* dst=cvCreateImage(cvGetSize(_dst),8,3); cvZero(dst); for (int h=0; h<src->height; h++) { unsigned char* pycrcb=(unsigned char*)ycrcb->imageData+h*ycrcb->widthStep; unsigned char* psrc=(unsigned char*)src->imageData+h*src->widthStep; unsigned char* pdst=(unsigned char*)dst->imageData+h*dst->widthStep; for (int w=0; w<src->width; w++) { if (pycrcb[Cr]>=133&&pycrcb[Cr]<=173&&pycrcb[Cb]>=77&&pycrcb[Cb]<=127) { memcpy(pdst,psrc,3); } pycrcb+=3; psrc+=3; pdst+=3; } } //cvCopyImage(dst,_dst); //cvReleaseImage(&dst); } void cvSkinHSV(IplImage* src,IplImage* dst) { IplImage* hsv=cvCreateImage(cvGetSize(src),8,3); //IplImage* cr=cvCreateImage(cvGetSize(src),8,1); //IplImage* cb=cvCreateImage(cvGetSize(src),8,1); cvCvtColor(src,hsv,CV_BGR2HSV); //cvSplit(ycrcb,0,cr,cb,0); static const int V=2; static const int S=1; static const int H=0; //IplImage* dst=cvCreateImage(cvGetSize(_dst),8,3); cvZero(dst); for (int h=0; h<src->height; h++) { unsigned char* phsv=(unsigned char*)hsv->imageData+h*hsv->widthStep; unsigned char* psrc=(unsigned char*)src->imageData+h*src->widthStep; unsigned char* pdst=(unsigned char*)dst->imageData+h*dst->widthStep; for (int w=0; w<src->width; w++) { if (phsv[H]>=7&&phsv[H]<=29) { memcpy(pdst,psrc,3); } phsv+=3; psrc+=3; pdst+=3; } } //cvCopyImage(dst,_dst); //cvReleaseImage(&dst); } ~~~ 下面是效果图: 测试图片: ![](https://box.kancloud.cn/2016-01-19_569e21ac93ccb.jpg) 下图的贴图依次对应上面的六种方法: ![](https://box.kancloud.cn/2016-01-19_569e21acc03a8.jpg) ![](https://box.kancloud.cn/2016-01-19_569e21acdd39c.jpg) ![](https://box.kancloud.cn/2016-01-19_569e21ad0652e.jpg) ![](https://box.kancloud.cn/2016-01-19_569e21ad18287.jpg) ![](https://box.kancloud.cn/2016-01-19_569e21ad38c05.jpg) ![](https://box.kancloud.cn/2016-01-19_569e21ad6923c.jpg) 从上面的结果对比图中可以清晰看的,ycrcb+ostu的效果无疑是最好的。其次是rgb和yuv方法。这个图片效果之所以这么好是因为测试图片拍摄的时候背景为白色。然后,遗憾的是,当背景色不纯的时候,比如有红也有黑,效果就很不理想了。实验发现,当背景为纯色,且是白色或黑色时,效果最好。 参考: http://blog.sina.com.cn/s/blog_9ce5a1b501017otq.html http://blog.csdn.net/scyscyao/article/details/5468577 http://wenku.baidu.com/view/05c47e03bed5b9f3f90f1ce4.html http://blog.csdn.net/onezeros/article/details/6136770    --------------------------本掌纹是作者自己的,转载请注明作者yanzi1225627