* <strong>过拟合</strong>:就是在训练集上准确率非常高,而在测试集上准确率低。
* <strong>分类问题评价方法</strong>:[https://www.zhihu.com/question/30643044](https://www.zhihu.com/question/30643044)
* <strong>分类模型评估之ROC-AUC曲线和RPC曲线</strong>:[https://blog.csdn.net/pipisorry/article/details/51788927](https://blog.csdn.net/pipisorry/article/details/51788927)
* <strong>混淆矩阵记忆口诀</strong>:包含主对角线(真正、真反),剩余(假正,假反)。
![](https://img.kancloud.cn/ca/bd/cabdf622bb2f6a8cb6e03f43ce32498b_504x192.png)
* [模型评估方法(混淆矩阵、查准率&查全率&P-R图)](https://blog.csdn.net/zzh1301051836/article/details/88965040)
* [欠拟合的解决方案有哪些?](https://support.huaweicloud.com/modelarts_faq/modelarts_05_0170.html)
* scikit-learn算法选择路径:
![](https://img.kancloud.cn/e1/07/e107657ef36beb72d5b4b47230c87296_2122x1323.png)
* [推荐系统中SVD算法详解](https://blog.csdn.net/fool_ran/article/details/79384040)
* [scikit-learn算法选择路径解释](https://blog.csdn.net/hjwbit/article/details/88065566?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1.control)
* [python 机器学习:sklearn全景图](https://blog.csdn.net/huoyingchong64/article/details/89879134?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.control&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.control)
* [scikit-learn文档](https://sklearn.apachecn.org/docs/master/11.html)