# 练习 23:三叉搜索树
> 原文:[Exercise 23: Ternary Search Trees](https://learncodethehardway.org/more-python-book/ex23.html)
> 译者:[飞龙](https://github.com/wizardforcel)
> 协议:[CC BY-NC-SA 4.0](http://creativecommons.org/licenses/by-nc-sa/4.0/)
> 自豪地采用[谷歌翻译](https://translate.google.cn/)
我们将研究的最后一个数据结构称为三叉搜索树(TSTree),它可以在一组字符串中快速查找字符串。它类似于`BSTree`,但是它有三个子节点,而不是两个,每个子节点只是一个字符而不是整个字符串。在`BSTree`中,左子节点和右子节点是树的“小于”和“大于”的分支。在`TSTree`中,左子节点,中子节点和右子节点是“小于”,“等于”和“大于”的分支。这可以让你选取一个字符串,将其分解成字符,然后遍历`TSTree`,每次一个字符,直到找到它或者你到达了末尾。
通过将你要搜索的一组键拆成单个字符的节点,`TSTree`高效地使用空间换取时间。每一个这些节点将占用比`BSTree`更多的空间,但这允许你仅仅通过比较键中的字符来搜索键。使用`BSTree`,你必须比较每个节点的键和被搜索键中的大多数字符。使用`TSTree`,你只需要比较被搜索键的每个字母,当你到达末尾,就完成了。
`TSTree`的另一件不错的事情是,它知道一个键何时不存在于集合中。想象一下,你的键的长度为 10 个字符,你需要在一组其他的键中找到它,但是如果键不存在,则需要快速停止。使用`TSTree`,你可以在一到两个字符的地方停止,到达树的末尾,并且知道这个键不存在。你最多只能比较键中的 10 个字符来发现它,字符比较比`BSTree`少得多。
## 挑战练习
这个练习中,你打算完成另一个“代码大师复制”的一部分,之后独立完成`TSTree `。你所需的代码是:
```py
class TSTreeNode(object):
def __init__(self, key, value, low, eq, high):
self.key = key
self.low = low
self.eq = eq
self.high = high
self.value = value
class TSTree(object):
def __init__(self):
self.root = None
def _get(self, node, keys):
key = keys[0]
if key < node.key:
return self._get(node.low, keys)
elif key == node.key:
if len(keys) > 1:
return self._get(node.eq, keys[1:])
else:
return node.value
else:
return self._get(node.high, keys)
def get(self, key):
keys = [x for x in key]
return self._get(self.root, keys)
def _set(self, node, keys, value):
next_key = keys[0]
if not node:
# what happens if you add the value here?
node = TSTreeNode(next_key, None, None, None, None)
if next_key < node.key:
node.low = self._set(node.low, keys, value)
elif next_key == node.key:
if len(keys) > 1:
node.eq = self._set(node.eq, keys[1:], value)
else:
# what happens if you DO NOT add the value here?
node.value = value
else:
node.high = self._set(node.high, keys, value)
return node
def set(self, key, value):
keys = [x for x in key]
self.root = self._set(self.root, keys, value)
```
你需要使用你学到的“代码大师复制”方法学习。要特别注意如何处理`node.eq`路径以及如何设置`node.value`。一旦你了解了`get`和`set`的工作方式,你将实现剩下的函数和所有的测试。要实现的函数有:
> `find_shortest`
> 给定一个关键字`K`,找到以`K`开头的最短键/值对。这意味着如果你的`set`中有`apple`和`application` ,那么调用`find_shortest("appl")`将返回关联`apple`的值。
> `find_longest`
> 给定一个关键字`K`,找到以`K`开头的最长键/值对。这意味着如果你的`set`中有`apple`和`application` ,那么调用`find_shortest("appl")`将返回关联`application`的值。
> `find_all`
> 给定一个关键字`K`,找到以`K`开头的所有键/值对。我会先实现它,然后基于它实现`find_shortest`和`find_longest`。
> `find_part`
> 给定一个关键字`K`,找到最短的键,它拥有`K`的开头的一部分。研究如何以及在哪里设置`node.value`来使其生效。
## 研究性学习
+ 查看原始代码的注释,看看在`_set`过程中,在哪里放置`value`。修改它会修改`get`的含义吗?为什么?
+ 确保你使用随机数据来测试,并测量一些性能。
+ 你也可以在`TSTree`中进行模糊匹配。我认为这是一个附加题,所以尝试实现它们,看看你想出了什么。模糊匹配是,`'a.p.e'`匹配`"apple"`、`"anpxe"`和`"ajpqe"`。
+ 如何搜索字符串的结尾?提示:不要过度考虑它。
- 笨办法学 Python · 续 中文版
- 引言
- 第一部分:预备知识
- 练习 0:起步
- 练习 1:流程
- 练习 2:创造力
- 练习 3:质量
- 第二部分:简单的黑魔法
- 练习 4:处理命令行参数
- 练习 5:cat
- 练习 6:find
- 练习 7:grep
- 练习 8:cut
- 练习 9:sed
- 练习 10:sort
- 练习 11:uniq
- 练习 12:复习
- 第三部分:数据结构
- 练习 13:单链表
- 练习 14:双链表
- 练习 15:栈和队列
- 练习 16:冒泡、快速和归并排序
- 练习 17:字典
- 练习 18:性能测量
- 练习 19:改善性能
- 练习 20:二叉搜索树
- 练习 21:二分搜索
- 练习 22:后缀数组
- 练习 23:三叉搜索树
- 练习 24:URL 快速路由
- 第四部分:进阶项目
- 练习 25:xargs
- 练习 26:hexdump
- 练习 27:tr
- 练习 28:sh
- 练习 29:diff和patch
- 第五部分:文本解析
- 练习 30:有限状态机
- 练习 31:正则表达式
- 练习 32:扫描器
- 练习 33:解析器
- 练习 34:分析器
- 练习 35:解释器
- 练习 36:简单的计算器
- 练习 37:小型 BASIC
- 第六部分:SQL 和对象关系映射
- 练习 38:SQL 简介
- 练习 39:SQL 创建
- 练习 40:SQL 读取
- 练习 41:SQL 更新
- 练习 42:SQL 删除
- 练习 43:SQL 管理
- 练习 44:使用 Python 的数据库 API
- 练习 45:创建 ORM
- 第七部分:大作业
- 练习 46:blog
- 练习 47:bc
- 练习 48:ed
- 练习 49:sed
- 练习 50:vi
- 练习 51:lessweb
- 练习 52:moreweb