多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
``` //在 Qt5.x 编译qmake通过……2020年1月: #include "mainwindow.h" #include <QApplication> #include "qdebug.h" struct struc_X1X2 //放(2Ci二次函数的)两个根(的数据)结构: { double x1; double x2; };// struc_X1X2 x1x2_001; //---------------------------------------------------------------- //求(2Ci二次函数的)函数值 double func_Fx(double x, double a1, double b, double c,double y=0)// { double tmp_fx= a1*x*x+ b*x+ c; return tmp_fx; }// //---------------------------------------------------------------- // 用极值公式,求(2Ci二次函数)的极值: double fun_extremValue(double a1, double b, double c, double y=0)// { double tmp_y= 4.0*a1*c-b*b; return (tmp_y/(4.0*a1) ); }// //--------------------------------------------------------------------------- //用求根公式,求(2Ci二次函数)的两个根:注意 形参 &x1,&x2……传递进入(子)函数的用法: struc_X1X2 func_x1x2(double aa, double b, double c, double * x1, double * x2)// { double tmp_y= sqrt(double(qAbs(double( b*b-4.0*aa*c ) ) ) ); //(b方- 4ac)并开平方 (*x1)= (-1.0*b - tmp_y)/ (2.0*aa); (*x2)= (-1.0*b+ tmp_y) /(2.0*aa); x1x2_001.x1= double(-1.0*b - tmp_y)/ (2.0*aa); x1x2_001.x2= double(-1.0*b + tmp_y)/ (2.0*aa); return x1x2_001; }// //--------------------- //(二次函数)的导函数的计算(函数): double func_di_fx(double x, double a, double b)// { double tmp_di_y= 2.0* a* x + b; return tmp_di_y; }// int main(int argc, char *argv[]) { QApplication a(argc, argv); MainWindow w; w.show(); // qDebug()<< "log test - Debug"; double x0_0=-20.0; //10.0;//-20.0;//给 X0赋予初值 2.0;//1.0;//1.0; //-10.0; double tmp_Fx; double tmp_Di_fx; double aa=1.0; double b=2.0;//2.0; double c=-1.0;//0.0;//3.0; double x0_01= x0_0-( func_Fx(x0_0,aa,b,c,0) / func_di_fx(x0_0,aa,b) ); //用 x0的值,(第1次)试用牛顿迭代公式,计算X1的值 double Xn_old01=x0_01; //准备迭代,所以把 X1的值 先放在 X(n-1)这个变量(Xn_old01)里 待用 double X_n=0.0; //= Xn_old01; // X_n赋予初值 (无实际意义)与 X_n=0.0;等效 // double X_extremV=fun_extremValue(aa,b,c,0.0); //用极值公式 计算 极值 //下面 迭代 double x1=0.0; double x2=0.0; //初始化 两个 变量,放(二次函数)的两个根 func_x1x2(aa,b,c, &x1,&x2); //(用求根公式)求根,并放在 (x1,x2) 当中,注意 形参 &x1,&x2的用法。 for(int i=1;i<99;++i)// { tmp_Fx= func_Fx(Xn_old01 , aa, b, c, 0); //计算函数 F(x)=Y 的值 tmp_Di_fx= func_di_fx(Xn_old01, aa, b); //计算 导函数 f'(x)= y' 的值 //double X_n= (double)Xn_old01- ( (double)tmp_Fx/ tmp_Di_fx); //这就是著名的 牛顿迭代公式 qDebug()<<"F(x(n-1)):"<<tmp_Fx<<", Dfx(n-1)"<<tmp_Di_fx; qDebug()<< "第NoId:"<< i; qDebug()<< "次迭代,求得的根x(n):"; qDebug() <<X_n << ", 求根与极值之间的差(这个errorValue代替误差)X(trun)-X(x):=" <<( X_extremV- X_n ) << "] x1,x2:=:"<< x1x2_001.x1<<","<< x1x2_001.x2<< " ;"; Xn_old01= X_n; }//for110i // qDebug("如果只写在括号里,是不需要QDebug头文件的 %d %s", 1.2, "3.4"); // return a.exec(); }// ``` 迭代99次以后的结果: ``` F(x(n-1)): 89.2528 , Dfx(n-1) -19.1053 x(n): -5.881 , X(trun)-X(x):= 3.881 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 21.8242 , Dfx(n-1) -9.762 x(n): -3.64538 , X(trun)-X(x):= 1.64538 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 4.99801 , Dfx(n-1) -5.29075 x(n): -2.70071 , X(trun)-X(x):= 0.700706 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 0.892401 , Dfx(n-1) -3.40141 x(n): -2.43834 , X(trun)-X(x):= 0.438344 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 0.0688337 , Dfx(n-1) -2.87669 x(n): -2.41442 , X(trun)-X(x):= 0.414416 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 0.000572555 , Dfx(n-1) -2.82883 x(n): -2.41421 , X(trun)-X(x):= 0.414214 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 4.09657e-08 , Dfx(n-1) -2.82843 x(n): -2.41421 , X(trun)-X(x):= 0.414214 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 0 , Dfx(n-1) -2.82843 ``` 观察结果, 几次(6次)以后…就稳定、并且收敛了…… ![](https://img.kancloud.cn/a9/ce/a9cedf494d3fc5460435ca64f9351e3e_951x983.jpg)![](https://img.kancloud.cn/2a/08/2a08fd7a300341b5d87a3bf24ea5670b_971x1221.jpg)![](https://img.kancloud.cn/e6/af/e6af46a343c7a34e99ee3a90867e9e0d_953x1213.jpg) ![](https://img.kancloud.cn/fc/4d/fc4da37a58824ad021dfecc4d91e4598_963x1229.jpg) ![](https://img.kancloud.cn/f6/28/f628dd7a7aad2390c89d41c35a3c6657_955x1247.jpg) ![](https://img.kancloud.cn/ca/29/ca29b685744d35b1f4d0a6beaa58bcf8_973x1029.jpg) 再运行一遍: p, li { white-space: pre-wrap; } ~~~ double x0_0=10.0;//-20.0;//给 X0赋予初值 ~~~ ``` F(x(n-1)): 29.2583 , Dfx(n-1) 11.1818 ??NoId: 1 ???????????????x(n): 1.97432 , ???????????????????????errorValue????????)X(trun)-X(x):= -3.97432 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 6.84656 , Dfx(n-1) 5.94863 ??NoId: 2 ???????????????x(n): 0.82337 , ???????????????????????errorValue????????)X(trun)-X(x):= -2.82337 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 1.32468 , Dfx(n-1) 3.64674 ??NoId: 3 ???????????????x(n): 0.46012 , ???????????????????????errorValue????????)X(trun)-X(x):= -2.46012 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 0.13195 , Dfx(n-1) 2.92024 ??NoId: 4 ???????????????x(n): 0.414935 , ???????????????????????errorValue????????)X(trun)-X(x):= -2.41494 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 0.00204167 , Dfx(n-1) 2.82987 ??NoId: 5 ???????????????x(n): 0.414214 , ???????????????????????errorValue????????)X(trun)-X(x):= -2.41421 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 5.20519e-07 , Dfx(n-1) 2.82843 ??NoId: 6 ???????????????x(n): 0.414214 , ???????????????????????errorValue????????)X(trun)-X(x):= -2.41421 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 3.37508e-14 , Dfx(n-1) 2.82843 ??NoId: 7 ???????????????x(n): 0.414214 6次以后收敛、并且稳定。 ``` 第3次运行: double x0_0=-20.0;//给 X0赋予初值 ``` F(x(n-1)): 89.2528 , Dfx(n-1) -19.1053 ??NoId: 1 ???????????????x(n): -5.881 , ???????????????????????errorValue????????)X(trun)-X(x):= 3.881 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 21.8242 , Dfx(n-1) -9.762 ??NoId: 2 ???????????????x(n): -3.64538 , ???????????????????????errorValue????????)X(trun)-X(x):= 1.64538 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 4.99801 , Dfx(n-1) -5.29075 ??NoId: 3 ???????????????x(n): -2.70071 , ???????????????????????errorValue????????)X(trun)-X(x):= 0.700706 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 0.892401 , Dfx(n-1) -3.40141 ??NoId: 4 ???????????????x(n): -2.43834 , ???????????????????????errorValue????????)X(trun)-X(x):= 0.438344 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 0.0688337 , Dfx(n-1) -2.87669 ??NoId: 5 ???????????????x(n): -2.41442 , ???????????????????????errorValue????????)X(trun)-X(x):= 0.414416 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 0.000572555 , Dfx(n-1) -2.82883 ??NoId: 6 ???????????????x(n): -2.41421 , ???????????????????????errorValue????????)X(trun)-X(x):= 0.414214 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 4.09657e-08 , Dfx(n-1) -2.82843 ??NoId: 7 ???????????????x(n): -2.41421 , ???????????????????????errorValue????????)X(trun)-X(x):= 0.414214 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 0 , Dfx(n-1) -2.82843 ??NoId: 8 ???????????????x(n): -2.41421 , ???????????????????????errorValue????????)X(trun)-X(x):= 0.414214 ] x1,x2:=: -2.41421 , 0.414214 ; F(x(n-1)): 0 , Dfx(n-1) -2.82843 ``` 请看: 利用 牛顿迭代法(Newton Iteration Method)求(2Ci二次函数的数值解)6次以后,就稳定、并且收敛到(局部)极值(局部最优解)了。 Qt支持中文不好,所以 ?(问号)都是中文提示……请忽略……