多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
程序流程图: ![](https://box.kancloud.cn/2016-04-21_57187cfa19827.jpg) DBSCAN核心功能函数,计算每个point的eps范围内的point数量pts; 对于所有pts >Minpts的point,记为Core point; 对于所有的corepoint,将其eps范围内的core point下标添加到vector<int>::corepts中; 对于所有的corepoint,采用深度优先的方式遍历core point的所有cluster,使得相互连接的core point具有相同的cluster编号; 计算所有pts < Minpts且在Core point范围内的,记为Borderpoint; 将所有Borderpoint加入到任意一个关联的core point; 剩余的point的为Noise point,文件写写入时忽略; 将point信息写入clustering文件,程序结束。 ~~~ /* DBSCAN Algorithm 15S103182 Ethan */ #include <iostream> #include <sstream> #include <fstream> #include <vector> #include <ctime> #include <cstdlib> #include <limits> #include <cmath> #include <stack> using namespace std; class point{ public: float x; float y; int cluster=0; int pointType=1;//1 noise 2 border 3 core int pts=0;//points in MinPts vector<int> corepts; int visited = 0; point (){} point (float a,float b,int c){ x = a; y = b; cluster = c; } }; float stringToFloat(string i){ stringstream sf; float score=0; sf<<i; sf>>score; return score; } vector<point> openFile(const char* dataset){ fstream file; file.open(dataset,ios::in); if(!file) { cout <<"Open File Failed!" <<endl; vector<point> a; return a; } vector<point> data; int i=1; while(!file.eof()){ string temp; file>>temp; int split = temp.find(',',0); point p(stringToFloat(temp.substr(0,split)),stringToFloat(temp.substr(split+1,temp.length()-1)),i++); data.push_back(p); } file.close(); cout<<"successful!"<<endl; return data; } float squareDistance(point a,point b){ return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } void DBSCAN(vector<point> dataset,float Eps,int MinPts){ int len = dataset.size(); //calculate pts cout<<"calculate pts"<<endl; for(int i=0;i<len;i++){ for(int j=i+1;j<len;j++){ if(squareDistance(dataset[i],dataset[j])<Eps) dataset[i].pts++; dataset[j].pts++; } } //core point cout<<"core point "<<endl; vector<point> corePoint; for(int i=0;i<len;i++){ if(dataset[i].pts>=MinPts) { dataset[i].pointType = 3; corePoint.push_back(dataset[i]); } } cout<<"joint core point"<<endl; //joint core point for(int i=0;i<corePoint.size();i++){ for(int j=i+1;j<corePoint.size();j++){ if(squareDistance(corePoint[i],corePoint[j])<Eps){ corePoint[i].corepts.push_back(j); corePoint[j].corepts.push_back(i); } } } for(int i=0;i<corePoint.size();i++){ stack<point*> ps; if(corePoint[i].visited == 1) continue; ps.push(&corePoint[i]); point *v; while(!ps.empty()){ v = ps.top(); v->visited = 1; ps.pop(); for(int j=0;j<v->corepts.size();j++){ if(corePoint[v->corepts[j]].visited==1) continue; corePoint[v->corepts[j]].cluster = corePoint[i].cluster; corePoint[v->corepts[j]].visited = 1; ps.push(&corePoint[v->corepts[j]]); } } } cout<<"border point,joint border point to core point"<<endl; //border point,joint border point to core point for(int i=0;i<len;i++){ if(dataset[i].pointType==3) continue; for(int j=0;j<corePoint.size();j++){ if(squareDistance(dataset[i],corePoint[j])<Eps) { dataset[i].pointType = 2; dataset[i].cluster = corePoint[j].cluster; break; } } } cout<<"output"<<endl; //output fstream clustering; clustering.open("clustering.txt",ios::out); for(int i=0;i<len;i++){ if(dataset[i].pointType == 2) clustering<<dataset[i].x<<","<<dataset[i].y<<","<<dataset[i].cluster<<"\n"; } for(int i=0;i<corePoint.size();i++){ clustering<<corePoint[i].x<<","<<corePoint[i].y<<","<<corePoint[i].cluster<<"\n"; } clustering.close(); } int main(int argc, char** argv) { vector<point> dataset = openFile("dataset3.txt"); DBSCAN(dataset,1.5,2); return 0; } ~~~ 数据文件格式:(x,y) ![](https://box.kancloud.cn/2016-04-21_57187cfa2ea61.jpg) 运行结果格式:(x,y,cluster) ![](https://box.kancloud.cn/2016-04-21_57187d363a488.jpg) 图形化展现: 特殊形状: ![](https://box.kancloud.cn/2016-04-21_57187d364d035.jpg) 桥梁: ![](https://box.kancloud.cn/2016-04-21_57187d3671f34.jpg) 变化密度: ![](https://box.kancloud.cn/2016-04-21_57187d6ddaa44.jpg) 总结: DBSCAN算法能够很好处理不同形状与大小的数据,并且抗噪音数据。但对于变化的密度,DBSCAN算法具有局限性。在实现Core point连接时,遇到了一点小小的麻烦,很难将相互连接的core point的cluster编号统一,后来通过给每个core point增加一个数组用于记录相连core point的下标信息,并采用深度优先进行遍历的方式,不仅提高了计算速度,同时也保证了准确性。对于实验数据结果,如果不对其进行图形化展现,很难看出聚类的效果,采用WPF(C#)技术对数据点进行处理,对不同cluster编号的点,赋予不同的颜色,进行图形展现。