### 令牌计数矢量化器
> 将文本样本集合转换为令牌计数向量。
### 构造函数参数
`$tokenizer`(Tokenizer) - tokenizer对象(见下文)
`$minDF`(float) - 忽略采样频率严格低于给定阈值的标记。该值在文献中也称为截止值。(默认为0)
```
use Phpml\FeatureExtraction\TokenCountVectorizer;
use Phpml\Tokenization\WhitespaceTokenizer;
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());
```
*****
### 转换
要转换文本样本集合,请使用`transform`方法。例:
```
$samples = [
'Lorem ipsum dolor sit amet dolor',
'Mauris placerat ipsum dolor',
'Mauris diam eros fringilla diam',
];
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());
// Build the dictionary.
$vectorizer->fit($samples);
// Transform the provided text samples into a vectorized list.
$vectorizer->transform($samples);
// return $samples = [
// [0 => 1, 1 => 1, 2 => 2, 3 => 1, 4 => 1],
// [5 => 1, 6 => 1, 1 => 1, 2 => 1],
// [5 => 1, 7 => 2, 8 => 1, 9 => 1],
//];
```
*****
### 词汇
您可以使用`getVocabulary()`方法提取词汇表。例:
```
$vectorizer->getVocabulary();
// return $vocabulary = ['Lorem', 'ipsum', 'dolor', 'sit', 'amet', 'Mauris', 'placerat', 'diam', 'eros', 'fringilla'];
```
*****
### 分词
`WhitespaceTokenizer` - 按空格选择标记。
`WordTokenizer` - 选择2个或更多字母数字字符的标记(标点符号完全被忽略,并始终被视为标记分隔符)。
- 基本介绍
- 关联规则学习
- 分类
- SVC
- k近邻算法
- NaiveBayes
- 回归
- 最小二乘法
- SVR
- 聚类
- k均值聚类算法
- DBSCAN聚类算法
- 公
- 准确性
- 混乱矩阵
- 分类报告
- 工作流程
- 神经网络
- 交叉验证
- 随机拆分
- 分层随机分裂
- 特征选择
- 方差阈值
- 特征选择
- 预处理
- 标准化
- 缺失值补全
- 特征提取(自然语言)
- 令牌计数矢量化器(文本处理)
- Tf-idf转换
- 数据集
- ArrayDataset
- CsvDataset
- FilesDataset
- SvmDataset
- MnistDataset
- 准备使用数据集
- Iris Dataset
- Wine Dataset
- Glass Dataset
- 模型管理
- 数学
- 距离
- 矩阵
- 组
- 统计