# linux SPI驱动分析
linux下驱动都是分层结构,降低耦合度。
下面从 总线,设备, 驱动 分别分析linux下的SPI驱动。
## 驱动目录分析
driver/spi下
spi-xxx芯片.c 芯片的spi控制器,如spi-sun6i.c
spi-bitbang.c 位段
spi-gpio.c gpio模拟spi
spi-slave-system-control.c 从设备
spi-slave-time.c 从设备
spi.c
spidev.c 设备
~~~
pure_initcall
core_initcall
core_initcall_sync
postcore_initcall
postcore_initcall_sync
arch_initcall
arch_initcall_sync
subsys_initcall
subsys_initcall_sync
fs_initcall
fs_initcall_sync
rootfs_initcall
device_initcall
device_initcall_sync
late_initcall
late_initcall_sync
~~~
### spi.c
spi核心操作
postcore_initcall(spi_init);
~~~
buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); //用于SPI数据传输
……
status = bus_register(&spi_bus_type); // /sys/bus下注册总线
……
status = class_register(&spi_master_class); // /sys/class 下注册类
……
if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
status = class_register(&spi_slave_class); // /sys/class下注册从机类
……
}
if (IS_ENABLED(CONFIG_OF_DYNAMIC))
WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
if (IS_ENABLED(CONFIG_ACPI))
WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); //电源管理
return 0;
~~~
~~~
struct bus_type spi_bus_type = {
.name = "spi",
.dev_groups = spi_dev_groups,
.match = spi_match_device, //总线作用即是匹配设备与驱动
.uevent = spi_uevent, //发送总线事件提醒
};
static struct class spi_master_class = {
.name = "spi_master",
.owner = THIS_MODULE,
.dev_release = spi_controller_release,
.dev_groups = spi_master_groups,
};
~~~
#### 总线注册
设备和驱动都是挂载在总线上。
分析总线注册函数bus_register,首先申请了一个subsys_private结构体内存。
该结构体中包含了三个kset结构,分别是`struct kset subsys、struct kset *devices_kset和struct kset *drivers_kset。`
当每次设备插入,或者驱动加载,就会分配一个device或者device_drive结构,将其加入drivers或devices(kset结构)链表中。后面就可以通过总线来匹配设备和驱动了。
总线目录名为spi,即/sys/bus/spi。
匹配函数:
~~~
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
const struct spi_device *spi = to_spi_device(dev);
const struct spi_driver *sdrv = to_spi_driver(drv);
/* Attempt an OF style match */
if (of_driver_match_device(dev, drv)) //驱动和设备匹配,则返回
return 1;
if (sdrv->id_table) //id匹配
return !!spi_match_id(sdrv->id_table, spi);
return strcmp(spi->modalias, drv->name) == 0; //别名匹配
}
~~~
#### spi统计接口
~~~
static struct attribute *spi_device_statistics_attrs[] = {
&dev_attr_spi_device_messages.attr,
&dev_attr_spi_device_transfers.attr,
&dev_attr_spi_device_errors.attr,
&dev_attr_spi_device_timedout.attr,
&dev_attr_spi_device_spi_sync.attr,
&dev_attr_spi_device_spi_sync_immediate.attr,
&dev_attr_spi_device_spi_async.attr,
&dev_attr_spi_device_bytes.attr,
&dev_attr_spi_device_bytes_rx.attr,
&dev_attr_spi_device_bytes_tx.attr,
&dev_attr_spi_device_transfer_bytes_histo0.attr,
……
&dev_attr_spi_device_transfer_bytes_histo16.attr,
&dev_attr_spi_device_transfers_split_maxsize.attr,
}
~~~
#### 驱动相关
~~~
static int spi_drv_probe(struct device *dev) //设置时钟频率,注册中断
int spi_add_device(struct spi_device *spi) //增加一个设备,设置模组,cs等,再调用父类device的方法
spi_unregister_device
//最后调用实际控制器里的操作方法
spi_set_cs
spi_map_buf
spi_map_msg
spi_transfer_one_message
__spi_pump_messages
spi_get_next_queued_message
spi_finalize_current_message
spi_start_queue
spi_start_queue
of_register_spi_device
spi_register_controller
devm_spi_register_controller
spi_sync
spi_write_then_read
~~~
### spidev.c
一个通用的spidev设备驱动。
spi设备的操作。封装了spi.c里的东西。
设备匹配:
~~~
static const struct of_device_id spidev_dt_ids[] = {
{ .compatible = "rohm,dh2228fv" },
{ .compatible = "lineartechnology,ltc2488" },
{ .compatible = "ge,achc" },
{ .compatible = "semtech,sx1301" },
{},
};
~~~
### gpio模拟spi
spi-bitbang.c 位段形式的spi控制器
spi-gpio.c gpio模拟spi的具体实现,由spi-bitbang调用。
其它一些芯片的.c下也有实现txrx_word等,可以使用。
~~~
//前面有一些具体的操作io函数
static inline void setsck(const struct spi_device *spi, int is_on)
static inline void setmosi(const struct spi_device *spi, int is_on)
static inline int getmiso(const struct spi_device *spi)
//发送相关的调用了bitbang的函数
static u32 spi_gpio_txrx_word_mode0(struct spi_device *spi,
unsigned nsecs, u32 word, u8 bits)
{
return bitbang_txrx_be_cpha0(spi, nsecs, 0, 0, word, bits);
}
static const struct of_device_id spi_gpio_dt_ids[] = {
{ .compatible = "spi-gpio" },
{}
};
MODULE_DEVICE_TABLE(of, spi_gpio_dt_ids);
static int spi_gpio_probe_dt(struct platform_device *pdev)
{}
static struct platform_driver spi_gpio_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = of_match_ptr(spi_gpio_dt_ids),
},
.probe = spi_gpio_probe,
.remove = spi_gpio_remove,
};
~~~
### 从机相关
spi-slave-system-control.c 从设备
spi-slave-time.c 从设备
### 芯片spi控制器
以spi-sun6i.c为例
~~~
struct sun6i_spi {
struct spi_master *master;
void __iomem *base_addr;
struct clk *hclk;
struct clk *mclk;
struct reset_control *rstc;
struct completion done;
const u8 *tx_buf;
u8 *rx_buf;
int len;
unsigned long fifo_depth;
};
static const struct of_device_id sun6i_spi_match[] = {
{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
{ .compatible = "allwinner,sun8i-h3-spi", .data = (void *)SUN8I_FIFO_DEPTH },
{}
};
MODULE_DEVICE_TABLE(of, sun6i_spi_match);
static const struct dev_pm_ops sun6i_spi_pm_ops = {
.runtime_resume = sun6i_spi_runtime_resume,
.runtime_suspend = sun6i_spi_runtime_suspend,
};
//填充spi_master的参数
static int sun6i_spi_probe(struct platform_device *pdev)
{
sspi->master = master;
sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
master->max_speed_hz = 100 * 1000 * 1000;
master->min_speed_hz = 3 * 1000;
master->set_cs = sun6i_spi_set_cs;
master->transfer_one = sun6i_spi_transfer_one;
master->num_chipselect = 4;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
master->bits_per_word_mask = SPI_BPW_MASK(8);
master->dev.of_node = pdev->dev.of_node;
master->auto_runtime_pm = true;
master->max_transfer_size = sun6i_spi_max_transfer_size;
sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
}
static struct platform_driver sun6i_spi_driver = {
.probe = sun6i_spi_probe,
.remove = sun6i_spi_remove,
.driver = {
.name = "sun6i-spi",
.of_match_table = sun6i_spi_match,
.pm = &sun6i_spi_pm_ops,
},
};
module_platform_driver(sun6i_spi_driver);
/*
module_platform_driver(xxx);
最终展开后就是如下形式:
static int __init xxx_init(void)
{
return platform_driver_register(&xxx);
}
module_init(xxx_init);
static void __exit xxx_init(void)
{
return platform_driver_unregister(&xxx);
}
module_exit(xxx_exit);
*/
~~~
- 前言
- 荔枝派TODO任务领取
- linux使用小贴士
- 入门篇
- 板卡介绍
- 开箱指南
- 烧录启动系统
- 联网方法
- 镜像使用
- 镜像说明
- buildroot系统使用
- debian系统使用
- 外设操作
- 外设操作概览
- 低速外设
- GPIO
- GPIO模拟低速接口
- UART
- PWM
- I2C
- SPI
- 高速接口
- SDIO
- USB
- EtherNet
- DVP CSI
- MIPI CSI
- 模拟外设
- CODEC
- LRADC
- 常见设备驱动
- USB摄像头
- USB 3G/4G 网卡
- 舵机
- 开发篇
- UBOOT适配
- UBOOT编译
- UBOOT配置
- UBOOT配置屏幕分辨率
- UBOOT配置SPI启动
- Linux内核开发
- Linux内核编译
- BSP Linux内核编译.md
- Linux内核选项
- 外设驱动与设备树
- RTL8723BS驱动
- 根文件系统定制
- buildroot定制系统
- buildroot添加软件包
- openwrt定制系统
- emdebian定制系统
- camdriod开发
- camdriod编译
- 主线Uboot引导Camdriod
- 系统镜像打包
- XBOOT适配
- 荔枝运行XBOOT
- 应用篇
- 游戏机-基于EmulationStation
- 游戏机-gnuboy
- 语音识别-科大讯飞云
- GUI-QT5
- 语音识别-离线关键词识别
- 路由器-Lichee Zero
- 投稿文章
- 荔枝派Zero开箱指南
- Zero i2c oled使用指南
- zero SPI LCD使用指南
- Zero u-boot编译和使用指南
- TF WiFi使用方法
- Zero Ethernet使用指南
- Zero 移植Qt5.4.1
- ZeroSpiNorFlash启动系统制作指南
- Visio-uboot-sunxi流程
- lichee 编译踩坑记录(ilichee ZERO)
- lichee_zero_外设GPIO接口
- TF WIFI 小白编
- 从零开始LicheePi Zero的开发
- 认识Zero的硬件
- 搭建Zero的开发环境
- 主线Uboot
- 主线kernel
- BSP kernel
- BSP内核启动
- bsp内核的摄像头使用
- BSP内核中的保留内存
- uboot启动BSP内核常见错误
- BSP内核 FBTFT移植
- BSP内核启动错误及警告解决
- buildroot 根文件系统
- emdebian 根文件系统
- SPI Flash 系统编译
- sunxi-fel增加对16M 以上flash的支持
- overlayfs的使用
- jffs2系统挂载不上的常见原因
- JFFS2 文件系统简介
- uboot对spi flash的识别
- bsp内核的SPI flash启动
- Docker开发环境
- Docker 命令速查
- 基础ubuntu系统配置
- docker离线镜像
- Zero系统烧录
- dd镜像烧录
- 分区镜像烧录
- SPI Flash系统烧录
- 一键镜像烧录
- Zero外设把玩
- I2C操作
- PWM输出
- CODEC的使用
- 以太网使用指南
- GPIO操作
- 文件IO方式
- C语言接口(mmap)
- Python操作GPIO
- pinctrl-sunxi介绍
- UART操作
- 点屏
- 点屏之RGB屏
- 点屏之SPI屏 ili9341
- 点屏之SPI OLED
- 点屏之I2C OLED
- 点屏之SPI屏 ili9488
- 点屏之MCU屏
- 点屏之触摸屏驱动
- 点屏之simple-framebuffer
- 点屏之屏幕时序
- 时钟控制器CCM
- 摄像头
- BSP DVP摄像头
- BSP MIPI 摄像头
- 主线DVP摄像头
- 主线 MIPI摄像头
- SPI 操作
- 应用层开发
- 开机自启动
- Segment Fault调试
- Zero通过OTG共享PC网络
- USB摄像头使用
- 基于QT的GUI开发
- 移植tslib
- 移植QT5.9.1
- 移植QT4.8.7
- QtCreator使用
- Qt5.x移植到Qt4.8
- Qt字体相关
- Qt移植总结
- Qt裁剪
- Qt去除鼠标指针显示
- zero_imager使用
- 驱动开发
- 设备树简介
- GPU/DRM 显示驱动
- sys下设备树查看
- atmel触摸屏驱动分析
- atmel触摸屏中断改轮询
- uboot下gpio操作
- helloworld驱动编译演示
- FBTFT分析
- 内核模块静态加载的顺序
- SPI驱动分析
- SPI 驱动编写
- Uboot开发
- 开机logo
- 看门狗的使用
- 关于系统reboot
- 内核printk等级设置