ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
# 1. 鸢尾花数据分类 ## 1.1 加载数据 ```python from sklearn.datasets import load_iris ``` ```python x_data = load_iris().data # 数据特征 y_data = load_iris().target # 数据标签 ``` ```python x_data.shape ``` (150, 4) ```python y_data.shape ``` (150,) ```python type(x_data) ``` numpy.ndarray ```python x_data[0] ``` array([5.1, 3.5, 1.4, 0.2]) ```python y_data ``` array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) ## 1.2 数据集划分 ```python import tensorflow as tf ``` ### 1.2.1 首先将数据集中的数据乱序 ```python import numpy as np # 使用一样的随机数种子,确保输入特征和标签配对 np.random.seed(19) np.random.shuffle(x_data) np.random.seed(19) np.random.shuffle(y_data) ``` ### 1.2.2 划分训练集和验证集 将数据集,简单按照2:8的比例划分为验证集和训练集合。 由于数据量大小为150,故而为前120条和后30条。 ```python x_train = x_data[:-30] x_test = x_data[-30:] y_train = y_data[:-30] y_test = y_data[-30:] ``` 数据类型转换 ```python x_train = tf.cast(x_train, tf.float32) x_test = tf.cast(x_test, tf.float32) ``` 将输入的数据特征和标签进行配对,每32个作为一个batch,进行输入打包 ```python train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) ``` ## 1.3 定义神经网络 ### 1.3.1 定义可训练的参数 ```python w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1)) b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1)) ``` ### 1.3.2 计算梯度和更新 ```python # 超参数 lr = 0.02 epoch = 500 for e in range(epoch): loss_all = 0 for step, (x_train, y_train) in enumerate(train_db): with tf.GradientTape() as tape: # 记录梯度信息 # 前向传播计算y y = tf.matmul(x_train, w1) + b1 y = tf.nn.softmax(y) # 训练集真实标签,也变为三维的 real_y = tf.one_hot(y_train, depth=3) # 计算总loss loss = tf.reduce_mean(tf.square(real_y - y)) loss_all +=loss.numpy() # 计算梯度 grads = tape.gradient(loss, [w1, b1]) # 梯度更新 w1.assign_sub(lr * grads[0]) b1.assign_sub(lr * grads[1]) # 打印每个epoch的loss信息 print("Epoch: {}, loss: {}".format(e, loss_all/4)) # 测试 total_correct, total_number = 0, 0 for x_test, y_test in test_db: # 使用w1和b1进行预测 y = tf.matmul(x_test, w1) + b1 y = tf.nn.softmax(y) pred = tf.argmax(y, axis = 1) # 转换数据类型,然后判断是否和真实值相等 pred = tf.cast(pred, dtype=y_test.dtype) # 如果分类正确,值为1 correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32) # 加起来 correct = tf.reduce_sum(correct) # 所有batch中的correct total_correct += int(correct) # 总样本数 total_number += x_test.shape[0] # 总准确率 acc = total_correct / total_number print("测试准确率:{}".format(acc)) ``` 结果: ``` Epoch: 0, loss: 0.18507226184010506 测试准确率:0.5 Epoch: 1, loss: 0.18281254917383194 测试准确率:0.5 ... Epoch: 499, loss: 0.06610946264117956 测试准确率:0.9666666666666667 ``` ## 1.4 使用Dense来定义神经网络 注意到上面的部分使用自己计算梯度的方式来进行,因为数据为: 120x4,而最终分类为3分类问题,故而上面使用功能了一层神经网络,也即是: 120x4 x 4x3 => 120x3的矩阵。 ```python model = tf.keras.models.Sequential() model.add(tf.keras.layers.Dense(3, input_shape=(4, ), activation="softmax")) model.summary() ``` 统计结果: ``` Model: "sequential_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_2 (Dense) (None, 3) 15 ================================================================= Total params: 15 Trainable params: 15 Non-trainable params: 0 _________________________________________________________________ ``` 指定优化器,损失函数和度量。值得注意的是,这里使用交叉熵损失函数: ```python model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', # 分类的结果是数字编码的结果,用该交叉熵 metrics=['accuracy'] ) ``` 拟合: ```python model.fit(x_data, y_data, epochs=500, batch_size=32) ``` 结果: ``` Epoch 1/500 5/5 [==============================] - 0s 1ms/step - loss: 1.1094 - accuracy: 0.2400 ... Epoch 500/500 5/5 [==============================] - 0s 1ms/step - loss: 0.3297 - accuracy: 0.9667 <tensorflow.python.keras.callbacks.History at 0x207e5b65438> ```