企业🤖AI Agent构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
# Generator 函数 ## 简介 ### 基本概念 Generator函数是ES6提供的一种异步编程解决方案,语法行为与传统函数完全不同。本章详细介绍Generator函数的语法和API,它的异步编程应用请看《异步操作》一章。 Generator函数有多种理解角度。从语法上,首先可以把它理解成,Generator函数是一个状态机,封装了多个内部状态。 执行Generator函数会返回一个遍历器对象,也就是说,Generator函数除了状态机,还是一个遍历器对象生成函数。返回的遍历器对象,可以依次遍历Generator函数内部的每一个状态。 形式上,Generator函数是一个普通函数,但是有两个特征。一是,`function`关键字与函数名之间有一个星号;二是,函数体内部使用`yield`语句,定义不同的内部状态(yield语句在英语里的意思就是“产出”)。 ~~~ function* helloWorldGenerator() { yield 'hello'; yield 'world'; return 'ending'; } var hw = helloWorldGenerator(); ~~~ 上面代码定义了一个Generator函数`helloWorldGenerator`,它内部有两个`yield`语句“hello”和“world”,即该函数有三个状态:hello,world和return语句(结束执行)。 然后,Generator函数的调用方法与普通函数一样,也是在函数名后面加上一对圆括号。不同的是,调用Generator函数后,该函数并不执行,返回的也不是函数运行结果,而是一个指向内部状态的指针对象,也就是上一章介绍的遍历器对象(Iterator Object)。 下一步,必须调用遍历器对象的next方法,使得指针移向下一个状态。也就是说,每次调用`next`方法,内部指针就从函数头部或上一次停下来的地方开始执行,直到遇到下一个`yield`语句(或`return`语句)为止。换言之,Generator函数是分段执行的,`yield`语句是暂停执行的标记,而`next`方法可以恢复执行。 ~~~ hw.next() // { value: 'hello', done: false } hw.next() // { value: 'world', done: false } hw.next() // { value: 'ending', done: true } hw.next() // { value: undefined, done: true } ~~~ 上面代码一共调用了四次`next`方法。 第一次调用,Generator函数开始执行,直到遇到第一个`yield`语句为止。`next`方法返回一个对象,它的`value`属性就是当前`yield`语句的值hello,`done`属性的值false,表示遍历还没有结束。 第二次调用,Generator函数从上次`yield`语句停下的地方,一直执行到下一个`yield`语句。`next`方法返回的对象的`value`属性就是当前`yield`语句的值world,`done`属性的值false,表示遍历还没有结束。 第三次调用,Generator函数从上次`yield`语句停下的地方,一直执行到`return`语句(如果没有return语句,就执行到函数结束)。`next`方法返回的对象的`value`属性,就是紧跟在`return`语句后面的表达式的值(如果没有`return`语句,则`value`属性的值为undefined),`done`属性的值true,表示遍历已经结束。 第四次调用,此时Generator函数已经运行完毕,`next`方法返回对象的`value`属性为undefined,`done`属性为true。以后再调用`next`方法,返回的都是这个值。 总结一下,调用Generator函数,返回一个遍历器对象,代表Generator函数的内部指针。以后,每次调用遍历器对象的`next`方法,就会返回一个有着`value`和`done`两个属性的对象。`value`属性表示当前的内部状态的值,是`yield`语句后面那个表达式的值;`done`属性是一个布尔值,表示是否遍历结束。 ES6没有规定,`function`关键字与函数名之间的星号,写在哪个位置。这导致下面的写法都能通过。 ~~~ function * foo(x, y) { ··· } function *foo(x, y) { ··· } function* foo(x, y) { ··· } function*foo(x, y) { ··· } ~~~ 由于Generator函数仍然是普通函数,所以一般的写法是上面的第三种,即星号紧跟在`function`关键字后面。本书也采用这种写法。 ### yield语句 由于Generator函数返回的遍历器对象,只有调用`next`方法才会遍历下一个内部状态,所以其实提供了一种可以暂停执行的函数。`yield`语句就是暂停标志。 遍历器对象的`next`方法的运行逻辑如下。 (1)遇到`yield`语句,就暂停执行后面的操作,并将紧跟在`yield`后面的那个表达式的值,作为返回的对象的`value`属性值。 (2)下一次调用`next`方法时,再继续往下执行,直到遇到下一个`yield`语句。 (3)如果没有再遇到新的`yield`语句,就一直运行到函数结束,直到`return`语句为止,并将`return`语句后面的表达式的值,作为返回的对象的`value`属性值。 (4)如果该函数没有`return`语句,则返回的对象的`value`属性值为`undefined`。 需要注意的是,`yield`语句后面的表达式,只有当调用`next`方法、内部指针指向该语句时才会执行,因此等于为JavaScript提供了手动的“惰性求值”(Lazy Evaluation)的语法功能。 ~~~ function* gen() { yield 123 + 456; } ~~~ 上面代码中,yield后面的表达式`123 + 456`,不会立即求值,只会在`next`方法将指针移到这一句时,才会求值。 `yield`语句与`return`语句既有相似之处,也有区别。相似之处在于,都能返回紧跟在语句后面的那个表达式的值。区别在于每次遇到`yield`,函数暂停执行,下一次再从该位置继续向后执行,而`return`语句不具备位置记忆的功能。一个函数里面,只能执行一次(或者说一个)`return`语句,但是可以执行多次(或者说多个)`yield`语句。正常函数只能返回一个值,因为只能执行一次`return`;Generator函数可以返回一系列的值,因为可以有任意多个`yield`。从另一个角度看,也可以说Generator生成了一系列的值,这也就是它的名称的来历(在英语中,generator这个词是“生成器”的意思)。 Generator函数可以不用`yield`语句,这时就变成了一个单纯的暂缓执行函数。 ~~~ function* f() { console.log('执行了!') } var generator = f(); setTimeout(function () { generator.next() }, 2000); ~~~ 上面代码中,函数`f`如果是普通函数,在为变量`generator`赋值时就会执行。但是,函数`f`是一个Generator函数,就变成只有调用`next`方法时,函数`f`才会执行。 另外需要注意,`yield`语句不能用在普通函数中,否则会报错。 ~~~ (function (){ yield 1; })() // SyntaxError: Unexpected number ~~~ 上面代码在一个普通函数中使用`yield`语句,结果产生一个句法错误。 下面是另外一个例子。 ~~~ var arr = [1, [[2, 3], 4], [5, 6]]; var flat = function* (a) { a.forEach(function (item) { if (typeof item !== 'number') { yield* flat(item); } else { yield item; } } }; for (var f of flat(arr)){ console.log(f); } ~~~ 上面代码也会产生句法错误,因为`forEach`方法的参数是一个普通函数,但是在里面使用了`yield`语句(这个函数里面还使用了`yield*`语句,这里可以不用理会,详细说明见后文)。一种修改方法是改用`for`循环。 ~~~ var arr = [1, [[2, 3], 4], [5, 6]]; var flat = function* (a) { var length = a.length; for (var i = 0; i < length; i++) { var item = a[i]; if (typeof item !== 'number') { yield* flat(item); } else { yield item; } } }; for (var f of flat(arr)) { console.log(f); } // 1, 2, 3, 4, 5, 6 ~~~ 另外,`yield`语句如果用在一个表达式之中,必须放在圆括号里面。 ~~~ console.log('Hello' + yield); // SyntaxError console.log('Hello' + yield 123); // SyntaxError console.log('Hello' + (yield)); // OK console.log('Hello' + (yield 123)); // OK ~~~ `yield`语句用作函数参数或赋值表达式的右边,可以不加括号。 ~~~ foo(yield 'a', yield 'b'); // OK let input = yield; // OK ~~~ ### 与Iterator接口的关系 上一章说过,任意一个对象的`Symbol.iterator`方法,等于该对象的遍历器生成函数,调用该函数会返回该对象的一个遍历器对象。 由于Generator函数就是遍历器生成函数,因此可以把Generator赋值给对象的`Symbol.iterator`属性,从而使得该对象具有Iterator接口。 ~~~ var myIterable = {}; myIterable[Symbol.iterator] = function* () { yield 1; yield 2; yield 3; }; [...myIterable] // [1, 2, 3] ~~~ 上面代码中,Generator函数赋值给`Symbol.iterator`属性,从而使得`myIterable`对象具有了Iterator接口,可以被`...`运算符遍历了。 Generator函数执行后,返回一个遍历器对象。该对象本身也具有`Symbol.iterator`属性,执行后返回自身。 ~~~ function* gen(){ // some code } var g = gen(); g[Symbol.iterator]() === g // true ~~~ 上面代码中,`gen`是一个Generator函数,调用它会生成一个遍历器对象`g`。它的`Symbol.iterator`属性,也是一个遍历器对象生成函数,执行后返回它自己。 ## next方法的参数 `yield`句本身没有返回值,或者说总是返回`undefined`。`next`方法可以带一个参数,该参数就会被当作上一个`yield`语句的返回值。 ~~~ function* f() { for(var i=0; true; i++) { var reset = yield i; if(reset) { i = -1; } } } var g = f(); g.next() // { value: 0, done: false } g.next() // { value: 1, done: false } g.next(true) // { value: 0, done: false } ~~~ 上面代码先定义了一个可以无限运行的Generator函数`f`,如果`next`方法没有参数,每次运行到`yield`语句,变量`reset`的值总是`undefined`。当`next`方法带一个参数`true`时,当前的变量`reset`就被重置为这个参数(即`true`),因此`i`会等于-1,下一轮循环就会从-1开始递增。 这个功能有很重要的语法意义。Generator函数从暂停状态到恢复运行,它的上下文状态(context)是不变的。通过`next`方法的参数,就有办法在Generator函数开始运行之后,继续向函数体内部注入值。也就是说,可以在Generator函数运行的不同阶段,从外部向内部注入不同的值,从而调整函数行为。 再看一个例子。 ~~~ function* foo(x) { var y = 2 * (yield (x + 1)); var z = yield (y / 3); return (x + y + z); } var a = foo(5); a.next() // Object{value:6, done:false} a.next() // Object{value:NaN, done:false} a.next() // Object{value:NaN, done:true} var b = foo(5); b.next() // { value:6, done:false } b.next(12) // { value:8, done:false } b.next(13) // { value:42, done:true } ~~~ 上面代码中,第二次运行`next`方法的时候不带参数,导致y的值等于`2 * undefined`(即`NaN`),除以3以后还是`NaN`,因此返回对象的`value`属性也等于`NaN`。第三次运行`Next`方法的时候不带参数,所以`z`等于`undefined`,返回对象的`value`属性等于`5 + NaN + undefined`,即`NaN`。 如果向`next`方法提供参数,返回结果就完全不一样了。上面代码第一次调用`b`的`next`方法时,返回`x+1`的值6;第二次调用`next`方法,将上一次`yield`语句的值设为12,因此`y`等于24,返回`y / 3`的值8;第三次调用`next`方法,将上一次`yield`语句的值设为13,因此`z`等于13,这时`x`等于5,`y`等于24,所以`return`语句的值等于42。 注意,由于`next`方法的参数表示上一个`yield`语句的返回值,所以第一次使用`next`方法时,不能带有参数。V8引擎直接忽略第一次使用`next`方法时的参数,只有从第二次使用`next`方法开始,参数才是有效的。从语义上讲,第一个`next`方法用来启动遍历器对象,所以不用带有参数。 如果想要第一次调用`next`方法时,就能够输入值,可以在Generator函数外面再包一层。 ~~~ function wrapper(generatorFunction) { return function (...args) { let generatorObject = generatorFunction(...args); generatorObject.next(); return generatorObject; }; } const wrapped = wrapper(function* () { console.log(`First input: ${yield}`); return 'DONE'; }); wrapped().next('hello!') // First input: hello! ~~~ 上面代码中,Generator函数如果不用`wrapper`先包一层,是无法第一次调用`next`方法,就输入参数的。 再看一个通过`next`方法的参数,向Generator函数内部输入值的例子。 ~~~ function* dataConsumer() { console.log('Started'); console.log(`1. ${yield}`); console.log(`2. ${yield}`); return 'result'; } let genObj = dataConsumer(); genObj.next(); // Started genObj.next('a') // 1\. a genObj.next('b') // 2\. b ~~~ 上面代码是一个很直观的例子,每次通过`next`方法向Generator函数输入值,然后打印出来。 ## for...of循环 `for...of`循环可以自动遍历Generator函数时生成的`Iterator`对象,且此时不再需要调用`next`方法。 ~~~ function *foo() { yield 1; yield 2; yield 3; yield 4; yield 5; return 6; } for (let v of foo()) { console.log(v); } // 1 2 3 4 5 ~~~ 上面代码使用`for...of`循环,依次显示5个`yield`语句的值。这里需要注意,一旦`next`方法的返回对象的`done`属性为`true`,`for...of`循环就会中止,且不包含该返回对象,所以上面代码的`return`语句返回的6,不包括在`for...of`循环之中。 下面是一个利用Generator函数和`for...of`循环,实现斐波那契数列的例子。 ~~~ function* fibonacci() { let [prev, curr] = [0, 1]; for (;;) { [prev, curr] = [curr, prev + curr]; yield curr; } } for (let n of fibonacci()) { if (n > 1000) break; console.log(n); } ~~~ 从上面代码可见,使用`for...of`语句时不需要使用`next`方法。 利用`for...of`循环,可以写出遍历任意对象(object)的方法。原生的JavaScript对象没有遍历接口,无法使用`for...of`循环,通过Generator函数为它加上这个接口,就可以用了。 ~~~ function* objectEntries(obj) { let propKeys = Reflect.ownKeys(obj); for (let propKey of propKeys) { yield [propKey, obj[propKey]]; } } let jane = { first: 'Jane', last: 'Doe' }; for (let [key, value] of objectEntries(jane)) { console.log(`${key}: ${value}`); } // first: Jane // last: Doe ~~~ 上面代码中,对象`jane`原生不具备Iterator接口,无法用`for...of`遍历。这时,我们通过Generator函数`objectEntries`为它加上遍历器接口,就可以用`for...of`遍历了。加上遍历器接口的另一种写法是,将Generator函数加到对象的`Symbol.iterator`属性上面。 ~~~ function* objectEntries() { let propKeys = Object.keys(this); for (let propKey of propKeys) { yield [propKey, this[propKey]]; } } let jane = { first: 'Jane', last: 'Doe' }; jane[Symbol.iterator] = objectEntries; for (let [key, value] of jane) { console.log(`${key}: ${value}`); } // first: Jane // last: Doe ~~~ 除了`for...of`循环以外,扩展运算符(`...`)、解构赋值和`Array.from`方法内部调用的,都是遍历器接口。这意味着,它们都可以将Generator函数返回的Iterator对象,作为参数。 ~~~ function* numbers () { yield 1 yield 2 return 3 yield 4 } // 扩展运算符 [...numbers()] // [1, 2] // Array.from 方法 Array.from(numbers()) // [1, 2] // 解构赋值 let [x, y] = numbers(); x // 1 y // 2 // for...of 循环 for (let n of numbers()) { console.log(n) } // 1 // 2 ~~~ ## Generator.prototype.throw() Generator函数返回的遍历器对象,都有一个`throw`方法,可以在函数体外抛出错误,然后在Generator函数体内捕获。 ~~~ var g = function* () { try { yield; } catch (e) { console.log('内部捕获', e); } }; var i = g(); i.next(); try { i.throw('a'); i.throw('b'); } catch (e) { console.log('外部捕获', e); } // 内部捕获 a // 外部捕获 b ~~~ 上面代码中,遍历器对象`i`连续抛出两个错误。第一个错误被Generator函数体内的`catch`语句捕获。`i`第二次抛出错误,由于Generator函数内部的`catch`语句已经执行过了,不会再捕捉到这个错误了,所以这个错误就被抛出了Generator函数体,被函数体外的`catch`语句捕获。 `throw`方法可以接受一个参数,该参数会被`catch`语句接收,建议抛出`Error`对象的实例。 ~~~ var g = function* () { try { yield; } catch (e) { console.log(e); } }; var i = g(); i.next(); i.throw(new Error('出错了!')); // Error: 出错了!(…) ~~~ 注意,不要混淆遍历器对象的`throw`方法和全局的`throw`命令。上面代码的错误,是用遍历器对象的`throw`方法抛出的,而不是用`throw`命令抛出的。后者只能被函数体外的`catch`语句捕获。 ~~~ var g = function* () { while (true) { try { yield; } catch (e) { if (e != 'a') throw e; console.log('内部捕获', e); } } }; var i = g(); i.next(); try { throw new Error('a'); throw new Error('b'); } catch (e) { console.log('外部捕获', e); } // 外部捕获 [Error: a] ~~~ 上面代码之所以只捕获了`a`,是因为函数体外的`catch`语句块,捕获了抛出的`a`错误以后,就不会再继续`try`代码块里面剩余的语句了。 如果Generator函数内部没有部署`try...catch`代码块,那么`throw`方法抛出的错误,将被外部`try...catch`代码块捕获。 ~~~ var g = function* () { while (true) { yield; console.log('内部捕获', e); } }; var i = g(); i.next(); try { i.throw('a'); i.throw('b'); } catch (e) { console.log('外部捕获', e); } // 外部捕获 a ~~~ 上面代码中,Generator函数`g`内部没有部署`try...catch`代码块,所以抛出的错误直接被外部`catch`代码块捕获。 如果Generator函数内部和外部,都没有部署`try...catch`代码块,那么程序将报错,直接中断执行。 ~~~ var gen = function* gen(){ yield console.log('hello'); yield console.log('world'); } var g = gen(); g.next(); g.throw(); // hello // Uncaught undefined ~~~ 上面代码中,`g.throw`抛出错误以后,没有任何`try...catch`代码块可以捕获这个错误,导致程序报错,中断执行。 `throw`方法被捕获以后,会附带执行下一条`yield`语句。也就是说,会附带执行一次`next`方法。 ~~~ var gen = function* gen(){ try { yield console.log('a'); } catch (e) { // ... } yield console.log('b'); yield console.log('c'); } var g = gen(); g.next() // a g.throw() // b g.next() // c ~~~ 上面代码中,`g.throw`方法被捕获以后,自动执行了一次`next`方法,所以会打印`b`。另外,也可以看到,只要Generator函数内部部署了`try...catch`代码块,那么遍历器的`throw`方法抛出的错误,不影响下一次遍历。 另外,`throw`命令与`g.throw`方法是无关的,两者互不影响。 ~~~ var gen = function* gen(){ yield console.log('hello'); yield console.log('world'); } var g = gen(); g.next(); try { throw new Error(); } catch (e) { g.next(); } // hello // world ~~~ 上面代码中,`throw`命令抛出的错误不会影响到遍历器的状态,所以两次执行`next`方法,都进行了正确的操作。 这种函数体内捕获错误的机制,大大方便了对错误的处理。多个`yield`语句,可以只用一个`try...catch`代码块来捕获错误。如果使用回调函数的写法,想要捕获多个错误,就不得不为每个函数内部写一个错误处理语句,现在只在Generator函数内部写一次`catch`语句就可以了。 Generator函数体外抛出的错误,可以在函数体内捕获;反过来,Generator函数体内抛出的错误,也可以被函数体外的`catch`捕获。 ~~~ function *foo() { var x = yield 3; var y = x.toUpperCase(); yield y; } var it = foo(); it.next(); // { value:3, done:false } try { it.next(42); } catch (err) { console.log(err); } ~~~ 上面代码中,第二个`next`方法向函数体内传入一个参数42,数值是没有`toUpperCase`方法的,所以会抛出一个TypeError错误,被函数体外的`catch`捕获。 一旦Generator执行过程中抛出错误,且没有被内部捕获,就不会再执行下去了。如果此后还调用`next`方法,将返回一个`value`属性等于`undefined`、`done`属性等于`true`的对象,即JavaScript引擎认为这个Generator已经运行结束了。 ~~~ function* g() { yield 1; console.log('throwing an exception'); throw new Error('generator broke!'); yield 2; yield 3; } function log(generator) { var v; console.log('starting generator'); try { v = generator.next(); console.log('第一次运行next方法', v); } catch (err) { console.log('捕捉错误', v); } try { v = generator.next(); console.log('第二次运行next方法', v); } catch (err) { console.log('捕捉错误', v); } try { v = generator.next(); console.log('第三次运行next方法', v); } catch (err) { console.log('捕捉错误', v); } console.log('caller done'); } log(g()); // starting generator // 第一次运行next方法 { value: 1, done: false } // throwing an exception // 捕捉错误 { value: 1, done: false } // 第三次运行next方法 { value: undefined, done: true } // caller done ~~~ 上面代码一共三次运行`next`方法,第二次运行的时候会抛出错误,然后第三次运行的时候,Generator函数就已经结束了,不再执行下去了。 ## Generator.prototype.return() Generator函数返回的遍历器对象,还有一个`return`方法,可以返回给定的值,并且终结遍历Generator函数。 ~~~ function* gen() { yield 1; yield 2; yield 3; } var g = gen(); g.next() // { value: 1, done: false } g.return('foo') // { value: "foo", done: true } g.next() // { value: undefined, done: true } ~~~ 上面代码中,遍历器对象`g`调用`return`方法后,返回值的`value`属性就是`return`方法的参数`foo`。并且,Generator函数的遍历就终止了,返回值的`done`属性为`true`,以后再调用`next`方法,`done`属性总是返回`true`。 如果`return`方法调用时,不提供参数,则返回值的`value`属性为`undefined`。 ~~~ function* gen() { yield 1; yield 2; yield 3; } var g = gen(); g.next() // { value: 1, done: false } g.return() // { value: undefined, done: true } ~~~ 如果Generator函数内部有`try...finally`代码块,那么`return`方法会推迟到`finally`代码块执行完再执行。 ~~~ function* numbers () { yield 1; try { yield 2; yield 3; } finally { yield 4; yield 5; } yield 6; } var g = numbers() g.next() // { done: false, value: 1 } g.next() // { done: false, value: 2 } g.return(7) // { done: false, value: 4 } g.next() // { done: false, value: 5 } g.next() // { done: true, value: 7 } ~~~ 上面代码中,调用`return`方法后,就开始执行`finally`代码块,然后等到`finally`代码块执行完,再执行`return`方法。 ## yield*语句 如果在Generater函数内部,调用另一个Generator函数,默认情况下是没有效果的。 ~~~ function* foo() { yield 'a'; yield 'b'; } function* bar() { yield 'x'; foo(); yield 'y'; } for (let v of bar()){ console.log(v); } // "x" // "y" ~~~ 上面代码中,`foo`和`bar`都是Generator函数,在`bar`里面调用`foo`,是不会有效果的。 这个就需要用到`yield*`语句,用来在一个Generator函数里面执行另一个Generator函数。 ~~~ function* bar() { yield 'x'; yield* foo(); yield 'y'; } // 等同于 function* bar() { yield 'x'; yield 'a'; yield 'b'; yield 'y'; } // 等同于 function* bar() { yield 'x'; for (let v of foo()) { yield v; } yield 'y'; } for (let v of bar()){ console.log(v); } // "x" // "a" // "b" // "y" ~~~ 再来看一个对比的例子。 ~~~ function* inner() { yield 'hello!'; } function* outer1() { yield 'open'; yield inner(); yield 'close'; } var gen = outer1() gen.next().value // "open" gen.next().value // 返回一个遍历器对象 gen.next().value // "close" function* outer2() { yield 'open' yield* inner() yield 'close' } var gen = outer2() gen.next().value // "open" gen.next().value // "hello!" gen.next().value // "close" ~~~ 上面例子中,`outer2`使用了`yield*`,`outer1`没使用。结果就是,`outer1`返回一个遍历器对象,`outer2`返回该遍历器对象的内部值。 从语法角度看,如果`yield`命令后面跟的是一个遍历器对象,需要在`yield`命令后面加上星号,表明它返回的是一个遍历器对象。这被称为`yield*`语句。 ~~~ let delegatedIterator = (function* () { yield 'Hello!'; yield 'Bye!'; }()); let delegatingIterator = (function* () { yield 'Greetings!'; yield* delegatedIterator; yield 'Ok, bye.'; }()); for(let value of delegatingIterator) { console.log(value); } // "Greetings! // "Hello!" // "Bye!" // "Ok, bye." ~~~ 上面代码中,`delegatingIterator`是代理者,`delegatedIterator`是被代理者。由于`yield* delegatedIterator`语句得到的值,是一个遍历器,所以要用星号表示。运行结果就是使用一个遍历器,遍历了多个Generator函数,有递归的效果。 `yield*`后面的Generator函数(没有`return`语句时),等同于在Generator函数内部,部署一个`for...of`循环。 ~~~ function* concat(iter1, iter2) { yield* iter1; yield* iter2; } // 等同于 function* concat(iter1, iter2) { for (var value of iter1) { yield value; } for (var value of iter2) { yield value; } } ~~~ 上面代码说明,`yield*`后面的Generator函数(没有`return`语句时),不过是`for...of`的一种简写形式,完全可以用后者替代前者。反之,则需要用`var value = yield* iterator`的形式获取`return`语句的值。 如果`yield*`后面跟着一个数组,由于数组原生支持遍历器,因此就会遍历数组成员。 ~~~ function* gen(){ yield* ["a", "b", "c"]; } gen().next() // { value:"a", done:false } ~~~ 上面代码中,`yield`命令后面如果不加星号,返回的是整个数组,加了星号就表示返回的是数组的遍历器对象。 实际上,任何数据结构只要有Iterator接口,就可以被`yield*`遍历。 ~~~ let read = (function* () { yield 'hello'; yield* 'hello'; })(); read.next().value // "hello" read.next().value // "h" ~~~ 上面代码中,`yield`语句返回整个字符串,`yield*`语句返回单个字符。因为字符串具有Iterator接口,所以被`yield*`遍历。 如果被代理的Generator函数有`return`语句,那么就可以向代理它的Generator函数返回数据。 ~~~ function *foo() { yield 2; yield 3; return "foo"; } function *bar() { yield 1; var v = yield *foo(); console.log( "v: " + v ); yield 4; } var it = bar(); it.next() // {value: 1, done: false} it.next() // {value: 2, done: false} it.next() // {value: 3, done: false} it.next(); // "v: foo" // {value: 4, done: false} it.next() // {value: undefined, done: true} ~~~ 上面代码在第四次调用`next`方法的时候,屏幕上会有输出,这是因为函数`foo`的`return`语句,向函数`bar`提供了返回值。 再看一个例子。 ~~~ function* genFuncWithReturn() { yield 'a'; yield 'b'; return 'The result'; } function* logReturned(genObj) { let result = yield* genObj; console.log(result); } [...logReturned(genFuncWithReturn())] // The result // 值为 [ 'a', 'b' ] ~~~ 上面代码中,存在两次遍历。第一次是扩展运算符遍历函数`logReturned`返回的遍历器对象,第二次是`yield*`语句遍历函数`genFuncWithReturn`返回的遍历器对象。这两次遍历的效果是叠加的,最终表现为扩展运算符遍历函数`genFuncWithReturn`返回的遍历器对象。所以,最后的数据表达式得到的值等于`[ 'a', 'b' ]`。但是,函数`genFuncWithReturn`的`return`语句的返回值`The result`,会返回给函数`logReturned`内部的`result`变量,因此会有终端输出。 `yield*`命令可以很方便地取出嵌套数组的所有成员。 ~~~ function* iterTree(tree) { if (Array.isArray(tree)) { for(let i=0; i < tree.length; i++) { yield* iterTree(tree[i]); } } else { yield tree; } } const tree = [ 'a', ['b', 'c'], ['d', 'e'] ]; for(let x of iterTree(tree)) { console.log(x); } // a // b // c // d // e ~~~ 下面是一个稍微复杂的例子,使用`yield*`语句遍历完全二叉树。 ~~~ // 下面是二叉树的构造函数, // 三个参数分别是左树、当前节点和右树 function Tree(left, label, right) { this.left = left; this.label = label; this.right = right; } // 下面是中序(inorder)遍历函数。 // 由于返回的是一个遍历器,所以要用generator函数。 // 函数体内采用递归算法,所以左树和右树要用yield*遍历 function* inorder(t) { if (t) { yield* inorder(t.left); yield t.label; yield* inorder(t.right); } } // 下面生成二叉树 function make(array) { // 判断是否为叶节点 if (array.length == 1) return new Tree(null, array[0], null); return new Tree(make(array[0]), array[1], make(array[2])); } let tree = make([[['a'], 'b', ['c']], 'd', [['e'], 'f', ['g']]]); // 遍历二叉树 var result = []; for (let node of inorder(tree)) { result.push(node); } result // ['a', 'b', 'c', 'd', 'e', 'f', 'g'] ~~~ ## 作为对象属性的Generator函数 如果一个对象的属性是Generator函数,可以简写成下面的形式。 ~~~ let obj = { * myGeneratorMethod() { ··· } }; ~~~ 上面代码中,`myGeneratorMethod`属性前面有一个星号,表示这个属性是一个Generator函数。 它的完整形式如下,与上面的写法是等价的。 ~~~ let obj = { myGeneratorMethod: function* () { // ··· } }; ~~~ ## Generator函数的`this` Generator函数总是返回一个遍历器,ES6规定这个遍历器是Generator函数的实例,也继承了Generator函数的`prototype`对象上的方法。 ~~~ function* g() {} g.prototype.hello = function () { return 'hi!'; }; let obj = g(); obj instanceof g // true obj.hello() // 'hi!' ~~~ 上面代码表明,Generator函数`g`返回的遍历器`obj`,是`g`的实例,而且继承了`g.prototype`。但是,如果把`g`当作普通的构造函数,并不会生效,因为`g`返回的总是遍历器对象,而不是`this`对象。 ~~~ function* g() { this.a = 11; } let obj = g(); obj.a // undefined ~~~ 上面代码中,Generator函数`g`在`this`对象上面添加了一个属性`a`,但是`obj`对象拿不到这个属性。 Generator函数也不能跟`new`命令一起用,会报错。 ~~~ function* F() { yield this.x = 2; yield this.y = 3; } new F() // TypeError: F is not a constructor ~~~ 上面代码中,`new`命令跟构造函数`F`一起使用,结果报错,因为`F`不是构造函数。 那么,有没有办法让Generator函数返回一个正常的对象实例,既可以用`next`方法,又可以获得正常的`this`? 下面是一个变通方法。首先,生成一个空对象,使用`bind`方法绑定Generator函数内部的`this`。这样,构造函数调用以后,这个空对象就是Generator函数的实例对象了。 ~~~ function* F() { this.a = 1; yield this.b = 2; yield this.c = 3; } var obj = {}; var f = F.call(obj); f.next(); // Object {value: 2, done: false} f.next(); // Object {value: 3, done: false} f.next(); // Object {value: undefined, done: true} obj.a // 1 obj.b // 2 obj.c // 3 ~~~ 上面代码中,首先是`F`内部的`this`对象绑定`obj`对象,然后调用它,返回一个Iterator对象。这个对象执行三次`next`方法(因为`F`内部有两个`yield`语句),完成F内部所有代码的运行。这时,所有内部属性都绑定在`obj`对象上了,因此`obj`对象也就成了`F`的实例。 上面代码中,执行的是遍历器对象`f`,但是生成的对象实例是`obj`,有没有办法将这两个对象统一呢? 一个办法就是将`obj`换成`F.prototype`。 ~~~ function* F() { this.a = 1; yield this.b = 2; yield this.c = 3; } var f = F.call(F.prototype); f.next(); // Object {value: 2, done: false} f.next(); // Object {value: 3, done: false} f.next(); // Object {value: undefined, done: true} f.a // 1 f.b // 2 f.c // 3 ~~~ 再将`F`改成构造函数,就可以对它执行`new`命令了。 ~~~ function* gen() { this.a = 1; yield this.b = 2; yield this.c = 3; } function F() { return gen.call(gen.prototype); } var f = new F(); f.next(); // Object {value: 2, done: false} f.next(); // Object {value: 3, done: false} f.next(); // Object {value: undefined, done: true} f.a // 1 f.b // 2 f.c // 3 ~~~ ## 含义 ### Generator与状态机 Generator是实现状态机的最佳结构。比如,下面的clock函数就是一个状态机。 ~~~ var ticking = true; var clock = function() { if (ticking) console.log('Tick!'); else console.log('Tock!'); ticking = !ticking; } ~~~ 上面代码的clock函数一共有两种状态(Tick和Tock),每运行一次,就改变一次状态。这个函数如果用Generator实现,就是下面这样。 ~~~ var clock = function*() { while (true) { console.log('Tick!'); yield; console.log('Tock!'); yield; } }; ~~~ 上面的Generator实现与ES5实现对比,可以看到少了用来保存状态的外部变量`ticking`,这样就更简洁,更安全(状态不会被非法篡改)、更符合函数式编程的思想,在写法上也更优雅。Generator之所以可以不用外部变量保存状态,是因为它本身就包含了一个状态信息,即目前是否处于暂停态。 ### Generator与协程 协程(coroutine)是一种程序运行的方式,可以理解成“协作的线程”或“协作的函数”。协程既可以用单线程实现,也可以用多线程实现。前者是一种特殊的子例程,后者是一种特殊的线程。 **(1)协程与子例程的差异** 传统的“子例程”(subroutine)采用堆栈式“后进先出”的执行方式,只有当调用的子函数完全执行完毕,才会结束执行父函数。协程与其不同,多个线程(单线程情况下,即多个函数)可以并行执行,但是只有一个线程(或函数)处于正在运行的状态,其他线程(或函数)都处于暂停态(suspended),线程(或函数)之间可以交换执行权。也就是说,一个线程(或函数)执行到一半,可以暂停执行,将执行权交给另一个线程(或函数),等到稍后收回执行权的时候,再恢复执行。这种可以并行执行、交换执行权的线程(或函数),就称为协程。 从实现上看,在内存中,子例程只使用一个栈(stack),而协程是同时存在多个栈,但只有一个栈是在运行状态,也就是说,协程是以多占用内存为代价,实现多任务的并行。 **(2)协程与普通线程的差异** 不难看出,协程适合用于多任务运行的环境。在这个意义上,它与普通的线程很相似,都有自己的执行上下文、可以分享全局变量。它们的不同之处在于,同一时间可以有多个线程处于运行状态,但是运行的协程只能有一个,其他协程都处于暂停状态。此外,普通的线程是抢先式的,到底哪个线程优先得到资源,必须由运行环境决定,但是协程是合作式的,执行权由协程自己分配。 由于ECMAScript是单线程语言,只能保持一个调用栈。引入协程以后,每个任务可以保持自己的调用栈。这样做的最大好处,就是抛出错误的时候,可以找到原始的调用栈。不至于像异步操作的回调函数那样,一旦出错,原始的调用栈早就结束。 Generator函数是ECMAScript 6对协程的实现,但属于不完全实现。Generator函数被称为“半协程”(semi-coroutine),意思是只有Generator函数的调用者,才能将程序的执行权还给Generator函数。如果是完全执行的协程,任何函数都可以让暂停的协程继续执行。 如果将Generator函数当作协程,完全可以将多个需要互相协作的任务写成Generator函数,它们之间使用yield语句交换控制权。 ## 应用 Generator可以暂停函数执行,返回任意表达式的值。这种特点使得Generator有多种应用场景。 ### (1)异步操作的同步化表达 Generator函数的暂停执行的效果,意味着可以把异步操作写在yield语句里面,等到调用next方法时再往后执行。这实际上等同于不需要写回调函数了,因为异步操作的后续操作可以放在yield语句下面,反正要等到调用next方法时再执行。所以,Generator函数的一个重要实际意义就是用来处理异步操作,改写回调函数。 ~~~ function* loadUI() { showLoadingScreen(); yield loadUIDataAsynchronously(); hideLoadingScreen(); } var loader = loadUI(); // 加载UI loader.next() // 卸载UI loader.next() ~~~ 上面代码表示,第一次调用loadUI函数时,该函数不会执行,仅返回一个遍历器。下一次对该遍历器调用next方法,则会显示Loading界面,并且异步加载数据。等到数据加载完成,再一次使用next方法,则会隐藏Loading界面。可以看到,这种写法的好处是所有Loading界面的逻辑,都被封装在一个函数,按部就班非常清晰。 Ajax是典型的异步操作,通过Generator函数部署Ajax操作,可以用同步的方式表达。 ~~~ function* main() { var result = yield request("http://some.url"); var resp = JSON.parse(result); console.log(resp.value); } function request(url) { makeAjaxCall(url, function(response){ it.next(response); }); } var it = main(); it.next(); ~~~ 上面代码的main函数,就是通过Ajax操作获取数据。可以看到,除了多了一个yield,它几乎与同步操作的写法完全一样。注意,makeAjaxCall函数中的next方法,必须加上response参数,因为yield语句构成的表达式,本身是没有值的,总是等于undefined。 下面是另一个例子,通过Generator函数逐行读取文本文件。 ~~~ function* numbers() { let file = new FileReader("numbers.txt"); try { while(!file.eof) { yield parseInt(file.readLine(), 10); } } finally { file.close(); } } ~~~ 上面代码打开文本文件,使用yield语句可以手动逐行读取文件。 ### (2)控制流管理 如果有一个多步操作非常耗时,采用回调函数,可能会写成下面这样。 ~~~ step1(function (value1) { step2(value1, function(value2) { step3(value2, function(value3) { step4(value3, function(value4) { // Do something with value4 }); }); }); }); ~~~ 采用Promise改写上面的代码。 ~~~ Promise.resolve(step1) .then(step2) .then(step3) .then(step4) .then(function (value4) { // Do something with value4 }, function (error) { // Handle any error from step1 through step4 }) .done(); ~~~ 上面代码已经把回调函数,改成了直线执行的形式,但是加入了大量Promise的语法。Generator函数可以进一步改善代码运行流程。 ~~~ function* longRunningTask(value1) { try { var value2 = yield step1(value1); var value3 = yield step2(value2); var value4 = yield step3(value3); var value5 = yield step4(value4); // Do something with value4 } catch (e) { // Handle any error from step1 through step4 } } ~~~ 然后,使用一个函数,按次序自动执行所有步骤。 ~~~ scheduler(longRunningTask(initialValue)); function scheduler(task) { var taskObj = task.next(task.value); // 如果Generator函数未结束,就继续调用 if (!taskObj.done) { task.value = taskObj.value scheduler(task); } } ~~~ 注意,上面这种做法,只适合同步操作,即所有的`task`都必须是同步的,不能有异步操作。因为这里的代码一得到返回值,就继续往下执行,没有判断异步操作何时完成。如果要控制异步的操作流程,详见后面的《异步操作》一章。 下面,利用`for...of`循环会自动依次执行`yield`命令的特性,提供一种更一般的控制流管理的方法。 ~~~ let steps = [step1Func, step2Func, step3Func]; function *iterateSteps(steps){ for (var i=0; i< steps.length; i++){ var step = steps[i]; yield step(); } } ~~~ 上面代码中,数组`steps`封装了一个任务的多个步骤,Generator函数`iterateSteps`则是依次为这些步骤加上`yield`命令。 将任务分解成步骤之后,还可以将项目分解成多个依次执行的任务。 ~~~ let jobs = [job1, job2, job3]; function *iterateJobs(jobs){ for (var i=0; i< jobs.length; i++){ var job = jobs[i]; yield *iterateSteps(job.steps); } } ~~~ 上面代码中,数组`jobs`封装了一个项目的多个任务,Generator函数`iterateJobs`则是依次为这些任务加上`yield *`命令。 最后,就可以用`for...of`循环一次性依次执行所有任务的所有步骤。 ~~~ for (var step of iterateJobs(jobs)){ console.log(step.id); } ~~~ 再次提醒,上面的做法只能用于所有步骤都是同步操作的情况,不能有异步操作的步骤。如果想要依次执行异步的步骤,必须使用后面的《异步操作》一章介绍的方法。 `for...of`的本质是一个`while`循环,所以上面的代码实质上执行的是下面的逻辑。 ~~~ var it = iterateJobs(jobs); var res = it.next(); while (!res.done){ var result = res.value; // ... res = it.next(); } ~~~ ### (3)部署Iterator接口 利用Generator函数,可以在任意对象上部署Iterator接口。 ~~~ function* iterEntries(obj) { let keys = Object.keys(obj); for (let i=0; i < keys.length; i++) { let key = keys[i]; yield [key, obj[key]]; } } let myObj = { foo: 3, bar: 7 }; for (let [key, value] of iterEntries(myObj)) { console.log(key, value); } // foo 3 // bar 7 ~~~ 上述代码中,`myObj`是一个普通对象,通过`iterEntries`函数,就有了Iterator接口。也就是说,可以在任意对象上部署`next`方法。 下面是一个对数组部署Iterator接口的例子,尽管数组原生具有这个接口。 ~~~ function* makeSimpleGenerator(array){ var nextIndex = 0; while(nextIndex < array.length){ yield array[nextIndex++]; } } var gen = makeSimpleGenerator(['yo', 'ya']); gen.next().value // 'yo' gen.next().value // 'ya' gen.next().done // true ~~~ ### (4)作为数据结构 Generator可以看作是数据结构,更确切地说,可以看作是一个数组结构,因为Generator函数可以返回一系列的值,这意味着它可以对任意表达式,提供类似数组的接口。 ~~~ function *doStuff() { yield fs.readFile.bind(null, 'hello.txt'); yield fs.readFile.bind(null, 'world.txt'); yield fs.readFile.bind(null, 'and-such.txt'); } ~~~ 上面代码就是依次返回三个函数,但是由于使用了Generator函数,导致可以像处理数组那样,处理这三个返回的函数。 ~~~ for (task of doStuff()) { // task是一个函数,可以像回调函数那样使用它 } ~~~ 实际上,如果用ES5表达,完全可以用数组模拟Generator的这种用法。 ~~~ function doStuff() { return [ fs.readFile.bind(null, 'hello.txt'), fs.readFile.bind(null, 'world.txt'), fs.readFile.bind(null, 'and-such.txt') ]; } ~~~ 上面的函数,可以用一模一样的for...of循环处理!两相一比较,就不难看出Generator使得数据或者操作,具备了类似数组的接口。