多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
# 第18章 结构体 C/C++的结构体可以这么定义:它是一组存储在内存中的变量的集合,成员变量类型不要求相同。 ## 18.1 SYSTEMTIME 的例子 让我们看看Win32结构体SYSTEMTIME的定义: 清单18.1: WinBase.h ``` #!cpp typedef struct _SYSTEMTIME { WORD wYear; WORD wMonth; WORD wDayOfWeek; WORD wDay; WORD wHour; WORD wMinute; WORD wSecond; WORD wMilliseconds; } SYSTEMTIME, *PSYSTEMTIME; ``` 让我们写一个获取当前时间的C程序: ``` #!cpp #include <windows.h> #include <stdio.h> void main() { SYSTEMTIME t; GetSystemTime (&t); printf ("%04d-%02d-%02d %02d:%02d:%02d ", t.wYear, t.wMonth, t.wDay, t.wHour, t.wMinute, t.wSecond); return; }; ``` 反汇编结果如下(MSVC 2010): 清单18.2: MSVC 2010 ``` #!bash _t$ = -16 ; size = 16 _main PROC push ebp mov ebp, esp sub esp, 16 ; 00000010H lea eax, DWORD PTR _t$[ebp] push eax call DWORD PTR __imp__GetSystemTime@4 movzx ecx, WORD PTR _t$[ebp+12] ; wSecond push ecx movzx edx, WORD PTR _t$[ebp+10] ; wMinute push edx movzx eax, WORD PTR _t$[ebp+8] ; wHour push eax movzx ecx, WORD PTR _t$[ebp+6] ; wDay push ecx movzx edx, WORD PTR _t$[ebp+2] ; wMonth push edx movzx eax, WORD PTR _t$[ebp] ; wYear push eax push OFFSET $SG78811 ; ’%04d-%02d-%02d %02d:%02d:%02d’, 0aH, 00H call _printf add esp, 28 ; 0000001cH xor eax, eax mov esp, ebp pop ebp ret 0 _main ENDP ``` 在本地栈上程序为这个结构体分配了16个字节:这正是sizeof(WORD)*8的大小(因为结构体里有8个WORD)。 请注意结构体是由wYear开始的,因此,我们既可以说这是“传给GetSystemTime()函数的,一个指向SYSTEMTIME结构体的指针”,也可以说是它“传递了wYear的指针”。这两种说法是一样的!GetSystemTime()函数会把当前的年份写入指向的WORD指针中,然后把指针向后移动2个字节(译注:WORD大小为2字节),再写入月份,以此类推。 事实上,结构体的成员其实就是一个个紧贴在一起的变量。我可以用下面的方法来访问SYSTEMTIME结构体,代码如下: ``` #!cpp #include <windows.h> #include <stdio.h> void main() { WORD array[8]; GetSystemTime (array); printf ("%04d-%02d-%02d %02d:%02d:%02d ", array[0] /* wYear */, array[1] /* wMonth */, array[3] /* wDay */, array[4] /* wHour */, array[5] /* wMinute */, array[6] /* wSecond */); return; }; ``` 编译器会稍稍给出一点警告: ``` #!cpp systemtime2.c(7) : warning C4133: ’function’ : incompatible types - from ’WORD [8]’ to ’LPSYSTEMTIME’ ``` 不过至少,它会产生如下代码: 清单18.3: MSVC 2010 ``` #!bash $SG78573 DB ’%04d-%02d-%02d %02d:%02d:%02d’, 0aH, 00H _array$ = -16 ; size = 16 _main PROC push ebp mov ebp, esp sub esp, 16 ; 00000010H lea eax, DWORD PTR _array$[ebp] push eax call DWORD PTR __imp__GetSystemTime@4 movzx ecx, WORD PTR _array$[ebp+12] ; wSecond push ecx movzx edx, WORD PTR _array$[ebp+10] ; wMinute push edx movzx eax, WORD PTR _array$[ebp+8] ; wHoure push eax movzx ecx, WORD PTR _array$[ebp+6] ; wDay push ecx movzx edx, WORD PTR _array$[ebp+2] ; wMonth push edx movzx eax, WORD PTR _array$[ebp] ; wYear push eax push OFFSET $SG78573 call _printf add esp, 28 ; 0000001cH xor eax, eax mov esp, ebp pop ebp ret 0 _main ENDP ``` 当然,它也能一样正常工作! 一个很有趣的情况是这两次编译结果居然一样,所以光看编译结果,我们还看不出来到底别人用的结构体还是单单用的变量数组。 不过,没几个人会这么无聊的用这种方法写代码,因为这太麻烦了。还有,结构体也有可能会被开发者更改,交换,等等,所以还是用结构体方便。 ## 18.2 让我们用malloc()为结构体分配空间 但是,有时候把结构体放在堆中而不是栈上却更简单: ``` #!cpp #include <windows.h> #include <stdio.h> void main() { SYSTEMTIME *t; t=(SYSTEMTIME *)malloc (sizeof (SYSTEMTIME)); GetSystemTime (t); printf ("%04d-%02d-%02d %02d:%02d:%02d ", t->wYear, t->wMonth, t->wDay, t->wHour, t->wMinute, t->wSecond); free (t); return; }; ``` 让我们用优化/Ox编译一下它,看看我们得到什么东西 清单18.4: 优化的MSVC ``` #!bash _main PROC push esi push 16 ; 00000010H call _malloc add esp, 4 mov esi, eax push esi call DWORD PTR __imp__GetSystemTime@4 movzx eax, WORD PTR [esi+12] ; wSecond movzx ecx, WORD PTR [esi+10] ; wMinute movzx edx, WORD PTR [esi+8] ; wHour push eax movzx eax, WORD PTR [esi+6] ; wDay push ecx movzx ecx, WORD PTR [esi+2] ; wMonth push edx movzx edx, WORD PTR [esi] ; wYear push eax push ecx push edx push OFFSET $SG78833 call _printf push esi call _free add esp, 32 ; 00000020H xor eax, eax pop esi ret 0 _main ENDP ``` 所以,sizeof(SYSTEMTIME) = 16, 这正是malloc所分配的字节数。它返回了刚刚分配的地址空间,这个指针存在EAX寄存器里。然后,这个指针会被移动到ESI结存器中, GetSystemTime()会用它来存储返回值,这也就是为什么这里分配完之后并没有把EAX放到某个地方保存起来,而是直接使用它的原因。 新指令:MOVZX(Move with Zero eXtent, 0扩展移动)。它可以说是和MOVSX基本一样(13.1.1节),但是,它把其他位都设置为0。这是因为printf()需要一个32位的整数,但是我们的结构体里面是WORD,这只有16位厂。这也就是为什么从WORD复制到INT时第16~31位必须清零的原因了。因为,如果不清除的话,剩余位可能有之前操作留下来的干扰数据。 在下面这个例子里面,我可以用WORD数组来重现这个结构: ``` #!cpp #include <windows.h> #include <stdio.h> void main() { WORD *t; t=(WORD *)malloc (16); GetSystemTime (t); printf ("%04d-%02d-%02d %02d:%02d:%02d ", t[0] /* wYear */, t[1] /* wMonth */, t[3] /* wDay */, t[4] /* wHour */, t[5] /* wMinute */, t[6] /* wSecond */); free (t); return; }; ``` 我们得到: ``` #!bash $SG78594 DB ’%04d-%02d-%02d %02d:%02d:%02d’, 0aH, 00H _main PROC push esi push 16 ; 00000010H call _malloc add esp, 4 mov esi, eax push esi call DWORD PTR __imp__GetSystemTime@4 movzx eax, WORD PTR [esi+12] movzx ecx, WORD PTR [esi+10] movzx edx, WORD PTR [esi+8] push eax movzx eax, WORD PTR [esi+6] push ecx movzx ecx, WORD PTR [esi+2] push edx movzx edx, WORD PTR [esi] push eax push ecx push edx push OFFSET $SG78594 call _printf push esi call _free add esp, 32 ; 00000020H xor eax, eax pop esi ret 0 _main ENDP ``` 同样,我们可以看到编译结果和之前一样。个人重申一次,你不应该在写代码的时候用这么晦涩的方法来表达它。 ## 18.3 结构体tm ### 18.3.1 linux 在Linux下,我们看看time.h中的tm结构体是什么样子的: ``` #!cpp #include <stdio.h> #include <time.h> void main() { struct tm t; time_t unix_time; unix_time=time(NULL); localtime_r (&unix_time, &t); printf ("Year: %d ", t.tm_year+1900); printf ("Month: %d ", t.tm_mon); printf ("Day: %d ", t.tm_mday); printf ("Hour: %d ", t.tm_hour); printf ("Minutes: %d ", t.tm_min); printf ("Seconds: %d ", t.tm_sec); }; ``` 在GCC 4.4.1下编译得到: 清单18.6:GCC 4.4.1 ``` #!bash main proc near push ebp mov ebp, esp and esp, 0FFFFFFF0h sub esp, 40h mov dword ptr [esp], 0 ; first argument for time() call time mov [esp+3Ch], eax lea eax, [esp+3Ch] ; take pointer to what time() returned lea edx, [esp+10h] ; at ESP+10h struct tm will begin mov [esp+4], edx ; pass pointer to the structure begin mov [esp], eax ; pass pointer to result of time() call localtime_r mov eax, [esp+24h] ; tm_year lea edx, [eax+76Ch] ; edx=eax+1900 mov eax, offset format ; "Year: %d " mov [esp+4], edx mov [esp], eax call printf mov edx, [esp+20h] ; tm_mon mov eax, offset aMonthD ; "Month: %d " mov [esp+4], edx mov [esp], eax call printf mov edx, [esp+1Ch] ; tm_mday mov eax, offset aDayD ; "Day: %d " mov [esp+4], edx mov [esp], eax call printf mov edx, [esp+18h] ; tm_hour mov eax, offset aHourD ; "Hour: %d " mov [esp+4], edx mov [esp], eax call printf mov edx, [esp+14h] ; tm_min mov eax, offset aMinutesD ; "Minutes: %d " mov [esp+4], edx mov [esp], eax call printf mov edx, [esp+10h] mov eax, offset aSecondsD ; "Seconds: %d " mov [esp+4], edx ; tm_sec mov [esp], eax call printf leave retn main endp ``` 可是,IDA并没有为本地栈上变量建立本地变量名。但是因为我们已经学了汇编了,我们也不需要在这么简单的例子里面如此依赖它。 请也注意一下lea edx, [eax+76ch],这个指令把eax的值加上0x76c,但是并不修改任何标记位。请也参考LEA的相关章节(B.6.2节) 为了表现出结构体只是一个个的变量连续排列的东西,让我们重新测试一下这个例子,我们看看time.h: 清单18.7 time.h ``` #!cpp struct tm { int tm_sec; int tm_min; int tm_hour; int tm_mday; int tm_mon; int tm_year; int tm_wday; int tm_yday; int tm_isdst; }; #include <stdio.h> #include <time.h> void main() { int tm_sec, tm_min, tm_hour, tm_mday, tm_mon, tm_year, tm_wday, tm_yday, tm_isdst; time_t unix_time; unix_time=time(NULL); localtime_r (&unix_time, &tm_sec); printf ("Year: %d ", tm_year+1900); printf ("Month: %d ", tm_mon); printf ("Day: %d ", tm_mday); printf ("Hour: %d ", tm_hour); printf ("Minutes: %d ", tm_min); printf ("Seconds: %d ", tm_sec); }; ``` 注:指向tm_sec的指针会传递给localtime_r,或者说第一个“结构体”元素。 编译器会这么警告我们 清单18.8 GCC4.7.3 ``` #!bash GCC_tm2.c: In function ’main’: GCC_tm2.c:11:5: warning: passing argument 2 of ’localtime_r’ from incompatible pointer type [ enabled by default] In file included from GCC_tm2.c:2:0: /usr/include/time.h:59:12: note: expected ’struct tm *’ but argument is of type ’int *’ ``` 但是至少,它会生成这段代码: 清单18.9 GCC 4.7.3 ``` #!bash main proc near var_30 = dword ptr -30h var_2C = dword ptr -2Ch unix_time = dword ptr -1Ch tm_sec = dword ptr -18h tm_min = dword ptr -14h tm_hour = dword ptr -10h tm_mday = dword ptr -0Ch tm_mon = dword ptr -8 tm_year = dword ptr -4 push ebp mov ebp, esp and esp, 0FFFFFFF0h sub esp, 30h call __main mov [esp+30h+var_30], 0 ; arg 0 mov [esp+30h+unix_time], eax lea eax, [esp+30h+tm_sec] mov [esp+30h+var_2C], eax lea eax, [esp+30h+unix_time] mov [esp+30h+var_30], eax call localtime_r mov eax, [esp+30h+tm_year] add eax, 1900 mov [esp+30h+var_2C], eax mov [esp+30h+var_30], offset aYearD ; "Year: %d " call printf mov eax, [esp+30h+tm_mon] mov [esp+30h+var_2C], eax mov [esp+30h+var_30], offset aMonthD ; "Month: %d " call printf mov eax, [esp+30h+tm_mday] mov [esp+30h+var_2C], eax mov [esp+30h+var_30], offset aDayD ; "Day: %d " call printf mov eax, [esp+30h+tm_hour] mov [esp+30h+var_2C], eax mov [esp+30h+var_30], offset aHourD ; "Hour: %d " call printf mov eax, [esp+30h+tm_min] mov [esp+30h+var_2C], eax mov [esp+30h+var_30], offset aMinutesD ; "Minutes: %d " call printf mov eax, [esp+30h+tm_sec] mov [esp+30h+var_2C], eax mov [esp+30h+var_30], offset aSecondsD ; "Seconds: %d " call printf leave retn main endp ``` 这个代码和我们之前看到的一样,依然无法分辨出源代码是用了结构体还是只是数组而已。 当然这样也是可以运行的,但是实际操作中还是不建议用这种晦涩的方法。因为通常,编译器会在栈上按照声明顺序分配变量空间,但是并不能保证每次都是这样。 还有,其他编译器可能会警告tm_year,tm_mon, tm_mday, tm_hour, tm_min变量而不是tm_sec使用时未初始化。事实上,计算机并不知道调用localtime_r()的时候他们会被自动填充上。 我选择了这个例子来解释是因为他们都是int类型的,而SYSTEMTIME的所有成员是16位的WORD,如果把它们作为本地变量来声明的话,他们会按照32位的边界值来对齐,因此什么都用不了了(因为由于数据对齐,此时GetSystemTime()会把它们错误的填充起来)。请继续读下一节的内容:“结构体的成员封装”。 所以,结构体只是把一组变量封装到一个位置上,数据是一个接一个的。我可以说结构体是一个语法糖,因为它只是用来让编译器把一组变量保存在一个地方。但是,我不是编程方面的专家,所以更有可能的是,我可能会误读这个术语。还有,在早期(1972年以前)的时候,C是不支持结构体的。 ### 18.3.2 ARM+优化Keil+thumb模式 同样的例子: 清单18.10: 优化Keil+thumb模式 ``` #!bash var_38 = -0x38 var_34 = -0x34 var_30 = -0x30 var_2C = -0x2C var_28 = -0x28 var_24 = -0x24 timer = -0xC PUSH {LR} MOVS R0, #0 ; timer SUB SP, SP, #0x34 BL time STR R0, [SP,#0x38+timer] MOV R1, SP ; tp ADD R0, SP, #0x38+timer ; timer BL localtime_r LDR R1, =0x76C LDR R0, [SP,#0x38+var_24] ADDS R1, R0, R1 ADR R0, aYearD ; "Year: %d " BL __2printf LDR R1, [SP,#0x38+var_28] ADR R0, aMonthD ; "Month: %d " BL __2printf LDR R1, [SP,#0x38+var_2C] ADR R0, aDayD ; "Day: %d " BL __2printf LDR R1, [SP,#0x38+var_30] ADR R0, aHourD ; "Hour: %d " BL __2printf LDR R1, [SP,#0x38+var_34] ADR R0, aMinutesD ; "Minutes: %d " BL __2printf LDR R1, [SP,#0x38+var_38] ADR R0, aSecondsD ; "Seconds: %d " BL __2printf ADD SP, SP, #0x34 POP {PC} ``` ### 18.3.3 ARM+优化Xcode(LLVM)+thumb-2模式 IDA“碰巧知道”tm结构体(因为IDA“知道”例如localtime_r()这些库函数的参数类型),所以他把这里的结构变量的名字也显示出来了。 ``` #!bash var_38 = -0x38 var_34 = -0x34 PUSH {R7,LR} MOV R7, SP SUB SP, SP, #0x30 MOVS R0, #0 ; time_t * BLX _time ADD R1, SP, #0x38+var_34 ; struct tm * STR R0, [SP,#0x38+var_38] MOV R0, SP ; time_t * BLX _localtime_r LDR R1, [SP,#0x38+var_34.tm_year] MOV R0, 0xF44 ; "Year: %d " ADD R0, PC ; char * ADDW R1, R1, #0x76C BLX _printf LDR R1, [SP,#0x38+var_34.tm_mon] MOV R0, 0xF3A ; "Month: %d " ADD R0, PC ; char * BLX _printf LDR R1, [SP,#0x38+var_34.tm_mday] MOV R0, 0xF35 ; "Day: %d " ADD R0, PC ; char * BLX _printf LDR R1, [SP,#0x38+var_34.tm_hour] MOV R0, 0xF2E ; "Hour: %d " ADD R0, PC ; char * BLX _printf LDR R1, [SP,#0x38+var_34.tm_min] MOV R0, 0xF28 ; "Minutes: %d " ADD R0, PC ; char * BLX _printf LDR R1, [SP,#0x38+var_34] MOV R0, 0xF25 ; "Seconds: %d " ADD R0, PC ; char * BLX _printf ADD SP, SP, #0x30 POP {R7,PC} ... 00000000 tm struc ; (sizeof=0x2C, standard type) 00000000 tm_sec DCD ? 00000004 tm_min DCD ? 00000008 tm_hour DCD ? 0000000C tm_mday DCD ? 00000010 tm_mon DCD ? 00000014 tm_year DCD ? 00000018 tm_wday DCD ? 0000001C tm_yday DCD ? 00000020 tm_isdst DCD ? 00000024 tm_gmtoff DCD ? 00000028 tm_zone DCD ? ; offset 0000002C tm ends ``` 清单18.11: ARM+优化Xcode(LLVM)+thumb-2模式 ## 18.4 结构体的成员封装 结构体做的一个重要的事情就是封装了成员,让我们看看简单的例子: ``` #!bash #include <stdio.h> struct s { char a; int b; char c; int d; }; void f(struct s s) { printf ("a=%d; b=%d; c=%d; d=%d ", s.a, s.b, s.c, s.d); }; ``` 如我们所看到的,我们有2个char成员(每个1字节),和两个int类型的数据(每个4字节)。 ### 18.4.1 x86 编译后得到: ``` #!bash _s$ = 8 ; size = 16 ?f@@YAXUs@@@Z PROC ; f push ebp mov ebp, esp mov eax, DWORD PTR _s$[ebp+12] push eax movsx ecx, BYTE PTR _s$[ebp+8] push ecx mov edx, DWORD PTR _s$[ebp+4] push edx movsx eax, BYTE PTR _s$[ebp] push eax push OFFSET $SG3842 call _printf add esp, 20 ; 00000014H pop ebp ret 0 ?f@@YAXUs@@@Z ENDP ; f _TEXT ENDS ``` 如我们所见,每个成员的地址都按4字节对齐了,这也就是为什么char也会像int一样占用4字节。为什么?因为对齐后对CPU来说更容易读取数据。 但是,这么看明显浪费了一些空间。 让我们能用/Zp1(/Zp[n]代表结构体边界值为n字节)来编译它: 清单18.12: MSVC /Zp1 ``` #!bash _TEXT SEGMENT _s$ = 8 ; size = 10 ?f@@YAXUs@@@Z PROC ; f push ebp mov ebp, esp mov eax, DWORD PTR _s$[ebp+6] push eax movsx ecx, BYTE PTR _s$[ebp+5] push ecx mov edx, DWORD PTR _s$[ebp+1] push edx movsx eax, BYTE PTR _s$[ebp] push eax push OFFSET $SG3842 call _printf add esp, 20 ; 00000014H pop ebp ret 0 ?f@@YAXUs@@@Z ENDP ; f ``` 现在,结构体只用了10字节,而且每个char都占用1字节。我们得到了最小的空间,但是反过来看,CPU却无法用最优化的方式存取这些数据。 可以容易猜到的是,如果这个结构体在很多源代码和对象中被使用的话,他们都需要用同一种方式来编译起来。 除了MSVC /Zp选项,还有一个是#pragma pack编译器选项可以在源码中定义边界值。这个语句在MSVC和GCC中均被支持。 回到SYSTEMTIME结构体中的16位成员,我们的编译器怎么才能把它们按1字节边界来打包? WinNT.h有这么个代码: 清单18.13:WINNT.H ``` #!cpp #include "pshpack1.h" ``` 和这个: 清单18.14:WINNT.H ``` #!cpp #include "pshpack4.h" // 4 byte packing is the default ``` 文件PshPack1.h看起来像 清单18.15: PSHPACK1.H ``` #!bash #if ! (defined(lint) || defined(RC_INVOKED)) #if ( _MSC_VER >= 800 && !defined(_M_I86)) || defined(_PUSHPOP_SUPPORTED) #pragma warning(disable:4103) #if !(defined( MIDL_PASS )) || defined( __midl ) #pragma pack(push,1) #else #pragma pack(1) #endif #else #pragma pack(1) #endif #endif /* ! (defined(lint) || defined(RC_INVOKED)) */ ``` 这就是#pragma pack处理结构体大小的方法。 ### 18.4.2 ARM+优化Keil+thumb模式 清单18.16 ``` #!bash .text:0000003E exit ; CODE XREF: f+16 .text:0000003E 05 B0 ADD SP, SP, #0x14 .text:00000040 00 BD POP {PC} .text:00000280 f .text:00000280 .text:00000280 var_18 = -0x18 .text:00000280 a = -0x14 .text:00000280 b = -0x10 .text:00000280 c = -0xC .text:00000280 d = -8 .text:00000280 .text:00000280 0F B5 PUSH {R0-R3,LR} .text:00000282 81 B0 SUB SP, SP, #4 .text:00000284 04 98 LDR R0, [SP,#16] ; d .text:00000286 02 9A LDR R2, [SP,#8] ; b .text:00000288 00 90 STR R0, [SP] .text:0000028A 68 46 MOV R0, SP .text:0000028C 03 7B LDRB R3, [R0,#12] ; c .text:0000028E 01 79 LDRB R1, [R0,#4] ; a .text:00000290 59 A0 ADR R0, aADBDCDDD ; "a=%d; b=%d; c=%d; d=%d " .text:00000292 05 F0 AD FF BL __2printf .text:00000296 D2 E6 B exit ``` 我们可以回忆到的是,这里它直接用了结构体而不是指向结构体的指针,而且因为ARM里函数的前4个参数是通过寄存器传递的,所以结构体其实是通过R0-R3寄存器传递的。 LDRB指令将内存中的一个字节载入,然后把它扩展到32位,同时也考虑它的符号。这和x86架构的MOVSX(参考13.1.1节)基本一样。这里它被用来传递结构体的a、c两个成员。 还有一个我们可以容易指出来的是,在函数的末尾处,这里它没有使用正常的函数尾该有的指令,而是直接跳转到了另一个函数的末尾! 的确,这是一个相当不同的函数,而且跟我们的函数没有任何关联。但是,他却有着相同的函数结尾(也许是因为他也有5个本地变量(5 x 4 = 0x14))。而且他就在我们的函数附近(看看地址就知道了)。事实上,函数结尾并不重要,只要函数好好执行就行了嘛。显然,Keil决定要重用另一个函数的一部分,原因就是为了优化代码大小。普通函数结尾需要4字节,而跳转指令只要2个字节。 ### 18.4.3 ARM+优化XCode(LLVM)+thumb-2模式 清单18.17: 优化的Xcode (LLVM)+thumb-2模式 ``` #!bash var_C = -0xC PUSH {R7,LR} MOV R7, SP SUB SP, SP, #4 MOV R9, R1 ; b MOV R1, R0 ; a MOVW R0, #0xF10 ; "a=%d; b=%d; c=%d; d=%d " SXTB R1, R1 ; prepare a MOVT.W R0, #0 STR R3, [SP,#0xC+var_C] ; place d to stack for printf() ADD R0, PC ; format-string SXTB R3, R2 ; prepare c MOV R2, R9 ; b BLX _printf ADD SP, SP, #4 POP {R7,PC} ``` SXTB(Singned Extend Byte,有符号扩展字节)和x86的MOVSX(见13.1.1节)差不多,但是它不是对内存操作的,而是对一个寄存器操作的,至于剩余的——都一样。 ## 18.5 嵌套结构 如果一个结构体里定义了另一个结构体会怎么样? ``` #!cpp #include <stdio.h> struct inner_struct { int a; int b; }; struct outer_struct { char a; int b; struct inner_struct c; char d; int e; }; void f(struct outer_struct s) { printf ("a=%d; b=%d; c.a=%d; c.b=%d; d=%d; e=%d ", s.a, s.b, s.c.a, s.c.b, s.d, s.e); }; ``` 在这个例子里,我们把inner_struct放到了outer_struct的abde中间。 让我们在MSVC 2010中编译: 清单18.18: MSVC 2010 ``` #!bash _s$ = 8 ; size = 24 _f PROC push ebp mov ebp, esp mov eax, DWORD PTR _s$[ebp+20] ; e push eax movsx ecx, BYTE PTR _s$[ebp+16] ; d push ecx mov edx, DWORD PTR _s$[ebp+12] ; c.b push edx mov eax, DWORD PTR _s$[ebp+8] ; c.a push eax mov ecx, DWORD PTR _s$[ebp+4] ; b push ecx movsx edx, BYTE PTR _s$[ebp] ;a push edx push OFFSET $SG2466 call _printf add esp, 28 ; 0000001cH pop ebp ret 0 _f ENDP ``` 一个令我们好奇的事情是,看看这个反汇编代码,我们甚至不知道它的体内有另一个结构体!因此,我们可以说,嵌套的结构体,最终都会转化为线性的或者一维的结构。 当然,如果我们把struct inner_struct c;换成struct inner_struct *c(因此这里其实是定义个了一个指针),这个情况下状况则会大为不同。 ## 18.6 结构体中的位 ### 18.6.1 CPUID 的例子 C/C++中允许给结构体的每一个成员都定义一个准确的位域。如果我们想要节省空间的话,这个对我们来说将是非常有用的。比如,对BOOL来说,1位就足矣了。但是当然,如果我们想要速度的话,必然会浪费点空间。 让我们以CPUID指令为例,这个指令返回当前CPU的信息和特性。 如果EAX在指令执行之前就设置为了1,CPUID将会返回这些内容到EAX中。 ![enter image description here](https://box.kancloud.cn/2015-12-28_5680ec4642328.png) MSVC 2010有CPUID的宏,但是GCC 4.4.1没有,所以,我们就手动的利用它的内联汇编器为GCC写一个吧。 ``` #!cpp #include <stdio.h> #ifdef __GNUC__ static inline void cpuid(int code, int *a, int *b, int *c, int *d) { asm volatile("cpuid":"=a"(*a),"=b"(*b),"=c"(*c),"=d"(*d):"a"(code)); } #endif #ifdef _MSC_VER #include <intrin.h> #endif struct CPUID_1_EAX { unsigned int stepping:4; unsigned int model:4; unsigned int family_id:4; unsigned int processor_type:2; unsigned int reserved1:2; unsigned int extended_model_id:4; unsigned int extended_family_id:8; unsigned int reserved2:4; }; int main() { struct CPUID_1_EAX *tmp; int b[4]; #ifdef _MSC_VER __cpuid(b,1); #endif #ifdef __GNUC__ cpuid (1, &b[0], &b[1], &b[2], &b[3]); #endif tmp=(struct CPUID_1_EAX *)&b[0]; printf ("stepping=%d ", tmp->stepping); printf ("model=%d ", tmp->model); printf ("family_id=%d ", tmp->family_id); printf ("processor_type=%d ", tmp->processor_type); printf ("extended_model_id=%d ", tmp->extended_model_id); printf ("extended_family_id=%d ", tmp->extended_family_id); return 0; }; ``` 之后CPU会填充EAX,EBX,ECX,EDX,这些寄存器的值会通过b[]数组显现出来。接着我们用一个指向CPUID_1_EAX结构体的指针,把它指向b[]数组的EAX值。 换句话说,我们将把32位的INT类型的值当作一个结构体来看。 然后我们就能从结构体中读取数据。 让我们在MSVC 2008用/Ox编译一下: 清单18.19: MSVC 2008 ``` #!bash _b$ = -16 ; size = 16 _main PROC sub esp, 16 ; 00000010H push ebx xor ecx, ecx mov eax, 1 cpuid push esi lea esi, DWORD PTR _b$[esp+24] mov DWORD PTR [esi], eax mov DWORD PTR [esi+4], ebx mov DWORD PTR [esi+8], ecx mov DWORD PTR [esi+12], edx mov esi, DWORD PTR _b$[esp+24] mov eax, esi and eax, 15 ; 0000000fH push eax push OFFSET $SG15435 ; ’stepping=%d’, 0aH, 00H call _printf mov ecx, esi shr ecx, 4 and ecx, 15 ; 0000000fH push ecx push OFFSET $SG15436 ; ’model=%d’, 0aH, 00H call _printf mov edx, esi shr edx, 8 and edx, 15 ; 0000000fH push edx push OFFSET $SG15437 ; ’family_id=%d’, 0aH, 00H call _printf mov eax, esi shr eax, 12 ; 0000000cH and eax, 3 push eax push OFFSET $SG15438 ; ’processor_type=%d’, 0aH, 00H call _printf mov ecx, esi shr ecx, 16 ; 00000010H and ecx, 15 ; 0000000fH push ecx push OFFSET $SG15439 ; ’extended_model_id=%d’, 0aH, 00H call _printf shr esi, 20 ; 00000014H and esi, 255 ; 000000ffH push esi push OFFSET $SG15440 ; ’extended_family_id=%d’, 0aH, 00H call _printf add esp, 48 ; 00000030H pop esi xor eax, eax pop ebx add esp, 16 ; 00000010H ret 0 _main ENDP ``` SHR指令将EAX寄存器的值右移位,移出去的值必须被忽略,例如我们会忽略右边的位。 AND指令将清除左边不需要的位,换句话说,它处理过后EAX将只留下我们需要的值。 让我们在GCC4.4.1下用-O3编译。 清单18.20: GCC 4.4.1 ``` #!cpp main proc near ; DATA XREF: _start+17 push ebp mov ebp, esp and esp, 0FFFFFFF0h push esi mov esi, 1 push ebx mov eax, esi sub esp, 18h cpuid mov esi, eax and eax, 0Fh mov [esp+8], eax mov dword ptr [esp+4], offset aSteppingD ; "stepping=%d " mov dword ptr [esp], 1 call ___printf_chk mov eax, esi shr eax, 4 and eax, 0Fh mov [esp+8], eax mov dword ptr [esp+4], offset aModelD ; "model=%d " mov dword ptr [esp], 1 call ___printf_chk mov eax, esi shr eax, 8 and eax, 0Fh mov [esp+8], eax mov dword ptr [esp+4], offset aFamily_idD ; "family_id=%d " mov dword ptr [esp], 1 call ___printf_chk mov eax, esi shr eax, 0Ch and eax, 3 mov [esp+8], eax mov dword ptr [esp+4], offset aProcessor_type ; "processor_type=%d " mov dword ptr [esp], 1 call ___printf_chk mov eax, esi shr eax, 10h shr esi, 14h and eax, 0Fh and esi, 0FFh mov [esp+8], eax mov dword ptr [esp+4], offset aExtended_model ; "extended_model_id=%d " mov dword ptr [esp], 1 call ___printf_chk mov [esp+8], esi mov dword ptr [esp+4], offset unk_80486D0 mov dword ptr [esp], 1 call ___printf_chk add esp, 18h xor eax, eax pop ebx pop esi mov esp, ebp pop ebp retn main endp ``` 几乎一样。只有一个需要注意的地方就是GCC在调用每个printf()之前会把extended_model_id和extended_family_id的计算联合到一块去,而不是把它们分开计算。 ### 18.6.2 将浮点数当作结构体看待 我们已经在FPU(15章)中注意到了float和double两个类型都是有符号的,他们分为符号、有效数字和指数部分。但是我们能直接用上这些位嘛?让我们试一试float。 ![enter image description here](https://box.kancloud.cn/2015-12-28_5680ec464f81c.png) ``` #!cpp #include <stdio.h> #include <assert.h> #include <stdlib.h> #include <memory.h> struct float_as_struct { unsigned int fraction : 23; // fractional part unsigned int exponent : 8; // exponent + 0x3FF unsigned int sign : 1; // sign bit }; float f(float _in) { float f=_in; struct float_as_struct t; assert (sizeof (struct float_as_struct) == sizeof (float)); memcpy (&t, &f, sizeof (float)); t.sign=1; // set negative sign t.exponent=t.exponent+2; // multiple d by 2^n (n here is 2) memcpy (&f, &t, sizeof (float)); return f; }; int main() { printf ("%f ", f(1.234)); }; ``` float_as_struct结构占用了和float一样多的内存空间,也就是4字节,或者说,32位。 现在我们给输入值设置一个负值,然后指数加2,这样我们就能把整个数按照22的值来倍乘,也就是乘以4。 让我们在MSVC2008无优化模式下编译它。 清单18.21: MSVC 2008 ``` #!bash _t$ = -8 ; size = 4 _f$ = -4 ; size = 4 __in$ = 8 ; size = 4 ?f@@YAMM@Z PROC ; f push ebp mov ebp, esp sub esp, 8 fld DWORD PTR __in$[ebp] fstp DWORD PTR _f$[ebp] push 4 lea eax, DWORD PTR _f$[ebp] push eax lea ecx, DWORD PTR _t$[ebp] push ecx call _memcpy add esp, 12 ; 0000000cH mov edx, DWORD PTR _t$[ebp] or edx, -2147483648 ; 80000000H - set minus sign mov DWORD PTR _t$[ebp], edx mov eax, DWORD PTR _t$[ebp] shr eax, 23 ; 00000017H - drop significand and eax, 255 ; 000000ffH - leave here only exponent add eax, 2 ; add 2 to it and eax, 255 ; 000000ffH shl eax, 23 ; 00000017H - shift result to place of bits 30:23 mov ecx, DWORD PTR _t$[ebp] and ecx, -2139095041 ; 807fffffH - drop exponent or ecx, eax ; add original value without exponent with new calculated exponent mov DWORD PTR _t$[ebp], ecx push 4 lea edx, DWORD PTR _t$[ebp] push edx lea eax, DWORD PTR _f$[ebp] push eax call _memcpy add esp, 12 ; 0000000cH fld DWORD PTR _f$[ebp] mov esp, ebp pop ebp ret 0 ?f@@YAMM@Z ENDP ; f ``` 有点多余。如果用/Ox编译的话,这里就没有memcpy调用了。f变量会被直接使用,但是没有优化的版本看起来会更容易理解一点。 GCC 4.4.1的-O3选项会怎么做? 清单18.22: Gcc 4.4.1 ``` #!bash ; f(float) public _Z1ff _Z1ff proc near var_4 = dword ptr -4 arg_0 = dword ptr 8 push ebp mov ebp, esp sub esp, 4 mov eax, [ebp+arg_0] or eax, 80000000h ; set minus sign mov edx, eax and eax, 807FFFFFh ; leave only significand and exponent in EAX shr edx, 23 ; prepare exponent add edx, 2 ; add 2 movzx edx, dl ; clear all bits except 7:0 in EAX shl edx, 23 ; shift new calculated exponent to its place or eax, edx ; add new exponent and original value without exponent mov [ebp+var_4], eax fld [ebp+var_4] leave retn _Z1ff endp public main main proc near push ebp mov ebp, esp and esp, 0FFFFFFF0h sub esp, 10h fld ds:dword_8048614 ; -4.936 fstp qword ptr [esp+8] mov dword ptr [esp+4], offset asc_8048610 ; "%f " mov dword ptr [esp], 1 call ___printf_chk xor eax, eax leave retn main endp ``` F()函数基本可以理解,但是有趣的是,GCC可以在编译阶段就通过我们这堆大杂烩一样的代码计算出f(1.234)的值,从而会把他当作参数直接给printf()。