🔥码云GVP开源项目 12k star Uniapp+ElementUI 功能强大 支持多语言、二开方便! 广告
# 第02章 DataFrame基本操作 ```py In[1]: import pandas as pd import numpy as np pd.options.display.max_columns = 40 ``` ## 1\. 选取多个DataFrame列 ```py # 用列表选取多个列 In[2]: movie = pd.read_csv('data/movie.csv') movie_actor_director = movie[['actor_1_name', 'actor_2_name', 'actor_3_name', 'director_name']] movie_actor_director.head() Out[2]: ``` ![](https://img.kancloud.cn/99/73/9973590ec6e7ba26a29c4f64b981ab9b_1868x688.png) ```py # 选取单列 In[3]: movie[['director_name']].head() Out[3]: ``` ![](https://img.kancloud.cn/4e/2a/4e2a5dc1aa0b6a9796443140f1a6a015_548x672.png) ```py # 错误的选取多列的方式 In[4]: movie['actor_1_name', 'actor_2_name', 'actor_3_name', 'director_name'] --------------------------------------------------------------------------- KeyError Traceback (most recent call last) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance) 2441 try: -> 2442 return self._engine.get_loc(key) 2443 except KeyError: pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5280)() pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20523)() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20477)() KeyError: ('actor_1_name', 'actor_2_name', 'actor_3_name', 'director_name') During handling of the above exception, another exception occurred: KeyError Traceback (most recent call last) <ipython-input-4-954222273e42> in <module>() ----> 1 movie['actor_1_name', 'actor_2_name', 'actor_3_name', 'director_name'] /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/frame.py in __getitem__(self, key) 1962 return self._getitem_multilevel(key) 1963 else: -> 1964 return self._getitem_column(key) 1965 1966 def _getitem_column(self, key): /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/frame.py in _getitem_column(self, key) 1969 # get column 1970 if self.columns.is_unique: -> 1971 return self._get_item_cache(key) 1972 1973 # duplicate columns & possible reduce dimensionality /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/generic.py in _get_item_cache(self, item) 1643 res = cache.get(item) 1644 if res is None: -> 1645 values = self._data.get(item) 1646 res = self._box_item_values(item, values) 1647 cache[item] = res /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/internals.py in get(self, item, fastpath) 3588 3589 if not isnull(item): -> 3590 loc = self.items.get_loc(item) 3591 else: 3592 indexer = np.arange(len(self.items))[isnull(self.items)] /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance) 2442 return self._engine.get_loc(key) 2443 except KeyError: -> 2444 return self._engine.get_loc(self._maybe_cast_indexer(key)) 2445 2446 indexer = self.get_indexer([key], method=method, tolerance=tolerance) pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5280)() pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20523)() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20477)() KeyError: ('actor_1_name', 'actor_2_name', 'actor_3_name', 'director_name') ``` ### 更多 ```py # 将列表赋值给一个变量,便于多选 In[6]: cols =['actor_1_name', 'actor_2_name', 'actor_3_name', 'director_name'] movie_actor_director = movie[cols] Out[6]: float64 13 int64 3 object 11 dtype: int64 ``` ```py # 使用select_dtypes(),选取整数列 In[7]: movie.select_dtypes(include=['int']).head() Out[7]: ``` ![](https://img.kancloud.cn/f6/52/f65291dc410eb13bbb7939dce6456d86_1370x396.png) ```py # 选取所有的数值列 In[8]: movie.select_dtypes(include=['number']).head() Out[8]: ``` ![](https://img.kancloud.cn/36/ed/36ed822d14deec88a26de2729e7ee604_4004x1472.png) ```py # 通过filter()函数过滤选取多列 In[9]: movie.filter(like='facebook').head() Out[9]: ``` ![](https://img.kancloud.cn/09/5b/095b7124c09a9d1062f5a80285b98207_4004x1144.png) ```py # 通过正则表达式选取多列 In[10]: movie.filter(regex='\d').head() Out[10]: ``` ![](https://img.kancloud.cn/79/ba/79ba57655d2b2b2f6502ca14d854d943_1998x524.png) ```py # filter()函数,传递列表到参数items,选取多列 In[11]: movie.filter(items=['actor_1_name', 'asdf']).head() Out[11]: ``` ![](https://img.kancloud.cn/34/94/3494f066664247a67298d6c1433464db_1480x772.png) ## 2\. 对列名进行排序 ```py # 读取movie数据集 In[12]: movie = pd.read_csv('data/movie.csv') In[13]: movie.head() Out[13]: ``` ![](https://img.kancloud.cn/5c/a4/5ca4628b119f2b9ac2fadc2900c23974_4000x1316.png) ```py # 打印列索引 In[14]: movie.columns Out[14]: Index(['color', 'director_name', 'num_critic_for_reviews', 'duration', 'director_facebook_likes', 'actor_3_facebook_likes', 'actor_2_name', 'actor_1_facebook_likes', 'gross', 'genres', 'actor_1_name', 'movie_title', 'num_voted_users', 'cast_total_facebook_likes', 'actor_3_name', 'facenumber_in_poster', 'plot_keywords', 'movie_imdb_link', 'num_user_for_reviews', 'language', 'country', 'content_rating', 'budget', 'title_year', 'actor_2_facebook_likes', 'imdb_score', 'aspect_ratio', 'movie_facebook_likes'], dtype='object') ``` ```py # 将列索引按照指定的顺序排列 In[15]: disc_core = ['movie_title','title_year', 'content_rating','genres'] disc_people = ['director_name','actor_1_name', 'actor_2_name','actor_3_name'] disc_other = ['color','country','language','plot_keywords','movie_imdb_link'] cont_fb = ['director_facebook_likes','actor_1_facebook_likes','actor_2_facebook_likes', 'actor_3_facebook_likes', 'cast_total_facebook_likes', 'movie_facebook_likes'] cont_finance = ['budget','gross'] cont_num_reviews = ['num_voted_users','num_user_for_reviews', 'num_critic_for_reviews'] cont_other = ['imdb_score','duration', 'aspect_ratio', 'facenumber_in_poster'] In[16]: new_col_order = disc_core + disc_people + disc_other + \ cont_fb + cont_finance + cont_num_reviews + cont_other set(movie.columns) == set(new_col_order) Out[16]: True In[17]: movie2 = movie[new_col_order] movie2.head() Out[17]: ``` ![](https://img.kancloud.cn/f8/28/f82817de45c270a7100e4991a5cc077d_4000x1308.png) ## 3\. 在整个DataFrame上操作 ```py In[18]: pd.options.display.max_rows = 8 movie = pd.read_csv('data/movie.csv') # 打印行数和列数 movie.shape Out[18]: (4916, 28) ``` ```py # 打印数据的个数 In[19]: movie.size Out[19]: 137648 ``` ```py # 该数据集的维度 In[20]: movie.ndim Out[20]: 2 ``` ```py # 该数据集的长度 In[21]: len(movie) Out[21]: 4916 ``` ```py # 各个列的值的个数 In[22]: movie.count() Out[22]: color 4897 director_name 4814 num_critic_for_reviews 4867 duration 4901 ... actor_2_facebook_likes 4903 imdb_score 4916 aspect_ratio 4590 movie_facebook_likes 4916 Length: 28, dtype: int64 ``` ```py # 各列的最小值 In[23]: movie.min() Out[23]: num_critic_for_reviews 1.00 duration 7.00 director_facebook_likes 0.00 actor_3_facebook_likes 0.00 ... actor_2_facebook_likes 0.00 imdb_score 1.60 aspect_ratio 1.18 movie_facebook_likes 0.00 Length: 16, dtype: float64 ``` ```py # 打印描述信息 In[24]: movie.describe() Out[24]: ``` ![](https://img.kancloud.cn/ee/b1/eeb113c085436f1a7c8a1683ea8e7988_2012x538.png) ```py # 使用percentiles参数指定分位数 In[25]: pd.options.display.max_rows = 10 In[26]: movie.describe(percentiles=[.01, .3, .99]) Out[26]: ``` ![](https://img.kancloud.cn/b0/dd/b0dd6101b9b2bc9212d6b9d97fc27904_2000x552.png) ```py # 打印各列空值的个数 In[27]: pd.options.display.max_rows = 8 In[28]: movie.isnull().sum() Out[28]: color 19 director_name 102 num_critic_for_reviews 49 duration 15 ... actor_2_facebook_likes 13 imdb_score 0 aspect_ratio 326 movie_facebook_likes 0 Length: 28, dtype: int64 ``` ### 更多 ```py # 设定skipna=False,没有缺失值的数值列才会计算结果 In[29]: movie.min(skipna=False) Out[29]: num_critic_for_reviews NaN duration NaN director_facebook_likes NaN actor_3_facebook_likes NaN ... actor_2_facebook_likes NaN imdb_score 1.6 aspect_ratio NaN movie_facebook_likes 0.0 Length: 16, dtype: float64 ``` ## 4\. 串联DataFrame方法 ```py # 使用isnull方法将每个值转变为布尔值 In[30]: movie = pd.read_csv('data/movie.csv') movie.isnull().head() Out[30]: ``` ![](https://img.kancloud.cn/36/18/36182d2129fe9db59777de5fc89a204b_2008x360.png) ```py # 使用sum统计布尔值,返回的是Series In[31]: movie.isnull().sum().head() Out[31]: color 19 director_name 102 num_critic_for_reviews 49 duration 15 director_facebook_likes 102 dtype: int64 ``` ```py # 对这个Series再使用sum,返回整个DataFrame的缺失值的个数,返回值是个标量 In[32]: movie.isnull().sum().sum() Out[32]: 2654 ``` ```py # 判断整个DataFrame有没有缺失值,方法是连着使用两个any In[33]: movie.isnull().any().any() Out[33]: True ``` ### 原理 ```py # isnull返回同样大小的DataFrame,但所有的值变为布尔值 In[34]: movie.isnull().get_dtype_counts() Out[34]: bool 28 dtype: int64 ``` ### 更多 ```py # movie数据集的对象数据包含缺失值。默认条件下,聚合方法min、max、sum,不会返回任何值。 In[35]: movie[['color', 'movie_title', 'color']].max() Out[35]: Series([], dtype: float64) ``` ```py # 要让pandas强行返回每列的值,必须填入缺失值。下面填入的是空字符串: In[36]: movie.select_dtypes(['object']).fillna('').max() Out[36]: color Color director_name Étienne Faure actor_2_name Zubaida Sahar genres Western ... movie_imdb_link [http://www.imdb.com/title/tt5574490/?ref_=fn_t...](http://www.imdb.com/title/tt5574490/?ref_=fn_t...) language Zulu country West Germany content_rating X Length: 12, dtype: object</pre> ``` ## 5\. 在DataFrame上使用运算符 ```py # college数据集的值既有数值也有对象,整数5不能与字符串相加 In[37]: college = pd.read_csv('data/college.csv') college + 5 --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/ops.py in na_op(x, y) 1175 result = expressions.evaluate(op, str_rep, x, y, -> 1176 raise_on_error=True, **eval_kwargs) 1177 except TypeError: /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/computation/expressions.py in evaluate(op, op_str, a, b, raise_on_error, use_numexpr, **eval_kwargs) 210 return _evaluate(op, op_str, a, b, raise_on_error=raise_on_error, --> 211 **eval_kwargs) 212 return _evaluate_standard(op, op_str, a, b, raise_on_error=raise_on_error) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/computation/expressions.py in _evaluate_numexpr(op, op_str, a, b, raise_on_error, truediv, reversed, **eval_kwargs) 121 if result is None: --> 122 result = _evaluate_standard(op, op_str, a, b, raise_on_error) 123 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/computation/expressions.py in _evaluate_standard(op, op_str, a, b, raise_on_error, **eval_kwargs) 63 with np.errstate(all='ignore'): ---> 64 return op(a, b) 65 TypeError: must be str, not int During handling of the above exception, another exception occurred: TypeError Traceback (most recent call last) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/internals.py in eval(self, func, other, raise_on_error, try_cast, mgr) 1183 with np.errstate(all='ignore'): -> 1184 result = get_result(other) 1185 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/internals.py in get_result(other) 1152 else: -> 1153 result = func(values, other) 1154 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/ops.py in na_op(x, y) 1201 with np.errstate(all='ignore'): -> 1202 result[mask] = op(xrav, y) 1203 else: TypeError: must be str, not int During handling of the above exception, another exception occurred: TypeError Traceback (most recent call last) <ipython-input-37-4749f68a2501> in <module>() 1 college = pd.read_csv('data/college.csv') ----> 2 college + 5 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/ops.py in f(self, other, axis, level, fill_value) 1239 self = self.fillna(fill_value) 1240 -> 1241 return self._combine_const(other, na_op) 1242 1243 f.__name__ = name /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/frame.py in _combine_const(self, other, func, raise_on_error) 3541 def _combine_const(self, other, func, raise_on_error=True): 3542 new_data = self._data.eval(func=func, other=other, -> 3543 raise_on_error=raise_on_error) 3544 return self._constructor(new_data) 3545 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/internals.py in eval(self, **kwargs) 3195 3196 def eval(self, **kwargs): -> 3197 return self.apply('eval', **kwargs) 3198 3199 def quantile(self, **kwargs): /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/internals.py in apply(self, f, axes, filter, do_integrity_check, consolidate, **kwargs) 3089 3090 kwargs['mgr'] = self -> 3091 applied = getattr(b, f)(**kwargs) 3092 result_blocks = _extend_blocks(applied, result_blocks) 3093 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/internals.py in eval(self, func, other, raise_on_error, try_cast, mgr) 1189 raise 1190 except Exception as detail: -> 1191 result = handle_error() 1192 1193 # technically a broadcast error in numpy can 'work' by returning a /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/internals.py in handle_error() 1172 # The 'detail' variable is defined in outer scope. 1173 raise TypeError('Could not operate %s with block values %s' % -> 1174 (repr(other), str(detail))) # noqa 1175 else: 1176 # return the values TypeError: Could not operate 5 with block values must be str, not int ``` ```py # 行索引名设为INSTNM,用UGDS_过滤出本科生的种族比例 In[38]: college = pd.read_csv('data/college.csv', index_col='INSTNM') college_ugds_ = college.filter(like='UGDS_') In[39]: college == 'asdf' # 这是jn上的,想要比较college和‘asdf’,没有意义,忽略 --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-39-697c8af60bcf> in <module>() ----> 1 college == 'asdf' /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/ops.py in f(self, other) 1302 # straight boolean comparisions we want to allow all columns 1303 # (regardless of dtype to pass thru) See #4537 for discussion. -> 1304 res = self._combine_const(other, func, raise_on_error=False) 1305 return res.fillna(True).astype(bool) 1306 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/frame.py in _combine_const(self, other, func, raise_on_error) 3541 def _combine_const(self, other, func, raise_on_error=True): 3542 new_data = self._data.eval(func=func, other=other, -> 3543 raise_on_error=raise_on_error) 3544 return self._constructor(new_data) 3545 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/internals.py in eval(self, **kwargs) 3195 3196 def eval(self, **kwargs): -> 3197 return self.apply('eval', **kwargs) 3198 3199 def quantile(self, **kwargs): /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/internals.py in apply(self, f, axes, filter, do_integrity_check, consolidate, **kwargs) 3089 3090 kwargs['mgr'] = self -> 3091 applied = getattr(b, f)(**kwargs) 3092 result_blocks = _extend_blocks(applied, result_blocks) 3093 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/internals.py in eval(self, func, other, raise_on_error, try_cast, mgr) 1203 1204 raise TypeError('Could not compare [%s] with block values' % -> 1205 repr(other)) 1206 1207 # transpose if needed TypeError: Could not compare ['asdf'] with block values ``` ```py # 查看前5行 In[40]: college_ugds_.head() Out[40]: ``` ![](https://img.kancloud.cn/7b/3a/7b3adde06f0db25914c37e99d7e123a3_1082x503.png) ```py # 现在都是均质数据了,可以进行数值运算 In[41]: college_ugds_.head() + .00501 Out[41]: ``` ![](https://img.kancloud.cn/c7/de/c7defa746ffee09ad4b2c292adc3dd76_952x550.png) ```py # 用底除计算百分比分数 In[42]: (college_ugds_.head() + .00501) // .01 Out[42]: ``` ![](https://img.kancloud.cn/7b/05/7b05f05bf56bf1e81961e9b56d2af24d_958x554.png) ```py # 再除以100 In[43]: college_ugds_op_round = (college_ugds_ + .00501) // .01 / 100 college_ugds_op_round.head() Out[43]: ``` ![](https://img.kancloud.cn/3d/f8/3df8630f13cf3de858ffa4d4edd72ed9_954x546.png) ```py # 保留两位小数 In[44]: college_ugds_round = (college_ugds_ + .00001).round(2) college_ugds_round.head() Out[44]: ``` ![](https://img.kancloud.cn/35/ab/35ab604a35310eaa556d6a0d7f579a94_958x545.png) ```py In[45]: .045 + .005 Out[45]: 0.049999999999999996 ``` ```py In[46]: college_ugds_op_round.equals(college_ugds_round) Out[46]: True ``` ### 更多 ```py # DataFrame的通用函数也可以实现上述方法 In[47]: college_ugds_op_round_methods = college_ugds_.add(.00501).floordiv(.01).div(100) ``` ## 6\. 比较缺失值 ```py # Pandas使用NumPy NaN(np.nan)对象表示缺失值。这是一个不等于自身的特殊对象: In[48]: np.nan == np.nan Out[48]: False ``` ```py # Python的None对象是等于自身的 In[49]: None == None Out[49]: True ``` ```py # 所有和np.nan的比较都返回False,除了不等于: In[50]: 5 > np.nan Out[50]: False In[51]: np.nan > 5 Out[51]: False In[52]: 5 != np.nan Out[52]: True ``` ```py # college_ugds_所有值和.0019比较,返回布尔值DataFrame In[53]: college = pd.read_csv('data/college.csv', index_col='INSTNM') college_ugds_ = college.filter(like='UGDS_') In[54]: college_ugds_.head() == .0019 Out[54]: ``` ![](https://img.kancloud.cn/31/4e/314e071475103930e83ee509f7ea39a5_957x545.png) ```py # 用DataFrame和DataFrame进行比较 In[55]: college_self_compare = college_ugds_ == college_ugds_ college_self_compare.head() Out[55]: ``` ![](https://img.kancloud.cn/aa/a6/aaa616bab21374b5d6e38b91a28869f9_949x495.png) ```py # 用all()检查是否所有的值都是True;这是因为缺失值不互相等于。 In[56]: college_self_compare.all() Out[56]: UGDS_WHITE False UGDS_BLACK False UGDS_HISP False UGDS_ASIAN False ... UGDS_NHPI False UGDS_2MOR False UGDS_NRA False UGDS_UNKN False Length: 9, dtype: bool ``` ```py # 可以用==号判断,然后求和 In[57]: (college_ugds_ == np.nan).sum() Out[57]: UGDS_WHITE 0 UGDS_BLACK 0 UGDS_HISP 0 UGDS_ASIAN 0 .. UGDS_NHPI 0 UGDS_2MOR 0 UGDS_NRA 0 UGDS_UNKN 0 Length: 9, dtype: int64 ``` ```py # 统计缺失值最主要方法是使用isnull方法: In[58]: college_ugds_.isnull().sum() Out[58]: UGDS_WHITE 661 UGDS_BLACK 661 UGDS_HISP 661 UGDS_ASIAN 661 ... UGDS_NHPI 661 UGDS_2MOR 661 UGDS_NRA 661 UGDS_UNKN 661 Length: 9, dtype: int64 ``` ```py # 比较两个DataFrame最直接的方法是使用equals()方法 In[59]: from pandas.testing import assert_frame_equal In[60]: assert_frame_equal(college_ugds_, college_ugds_) Out[60]: True ``` ### 更多 ```py # eq()方法类似于==,和前面的equals有所不同 In[61]: college_ugds_.eq(.0019).head() Out[61]: ``` ![](https://img.kancloud.cn/10/f0/10f0fa7a91ad4a28a378bb33135ed59e_959x551.png) ## 7\. 矩阵转置 ```py In[62]: college = pd.read_csv('data/college.csv', index_col='INSTNM') college_ugds_ = college.filter(like='UGDS_') college_ugds_.head() Out[62]: ``` ![](https://img.kancloud.cn/a7/25/a725060f66ebce866329b4c5959ae397_954x543.png) ```py # count()返回非缺失值的个数 In[63]: college_ugds_.count() Out[63]: UGDS_WHITE 6874 UGDS_BLACK 6874 UGDS_HISP 6874 UGDS_ASIAN 6874 ... UGDS_NHPI 6874 UGDS_2MOR 6874 UGDS_NRA 6874 UGDS_UNKN 6874 Length: 9, dtype: int64 ``` ```py # axis默认设为0 In[64]: college_ugds_.count(axis=0) Out[64]: UGDS_WHITE 6874 UGDS_BLACK 6874 UGDS_HISP 6874 UGDS_ASIAN 6874 ... UGDS_NHPI 6874 UGDS_2MOR 6874 UGDS_NRA 6874 UGDS_UNKN 6874 Length: 9, dtype: int64 ``` ```py # 等价于axis='index' In[65]: college_ugds_.count(axis='index') Out[65]: UGDS_WHITE 6874 UGDS_BLACK 6874 UGDS_HISP 6874 UGDS_ASIAN 6874 ... UGDS_NHPI 6874 UGDS_2MOR 6874 UGDS_NRA 6874 UGDS_UNKN 6874 Length: 9, dtype: int64 ``` ```py # 统计每行的非缺失值个数 In[66]: college_ugds_.count(axis='columns').head() Out[66]: INSTNM Alabama A & M University 9 University of Alabama at Birmingham 9 Amridge University 9 University of Alabama in Huntsville 9 Alabama State University 9 dtype: int64 ``` ```py # 除了统计每行的非缺失值个数,也可以求和加以确认 In[67]: college_ugds_.sum(axis='columns').head() Out[67]: INSTNM Alabama A & M University 1.0000 University of Alabama at Birmingham 0.9999 Amridge University 1.0000 University of Alabama in Huntsville 1.0000 Alabama State University 1.0000 dtype: float64 ``` ```py # 用中位数了解每列的分布 In[68]: college_ugds_.median(axis='index') Out[68]: UGDS_WHITE 0.55570 UGDS_BLACK 0.10005 UGDS_HISP 0.07140 UGDS_ASIAN 0.01290 ... UGDS_NHPI 0.00000 UGDS_2MOR 0.01750 UGDS_NRA 0.00000 UGDS_UNKN 0.01430 Length: 9, dtype: float64 ``` ### 更多 ```py # 使用累积求和cumsum()可以很容易看到白人、黑人、西班牙裔的比例 In[69]: college_ugds_cumsum = college_ugds_.cumsum(axis=1) college_ugds_cumsum.head() Out[69]: ``` ![](https://img.kancloud.cn/a1/9e/a19e7170bb62e7e0b864da7ffe278fe2_958x547.png) ```py # UGDS_HISP一列降序排列 In[70]: college_ugds_cumsum.sort_values('UGDS_HISP', ascending=False) Out[70]: ``` ![](https://img.kancloud.cn/3a/ce/3ace483a3d30b97ff3bc4e91731caece_953x1026.png) ## 8\. 确定大学校园多样性 ```py # US News给出的美国10所最具多样性的大学 In[71]: pd.read_csv('data/college_diversity.csv', index_col='School') Out[71]: ``` ![](https://img.kancloud.cn/1f/39/1f39dbac265dcae5406979c21a69e8d6_607x490.png) ```py In[72]: college = pd.read_csv('data/college.csv', index_col='INSTNM') college_ugds_ = college.filter(like='UGDS_') college_ugds_.head() Out[72]: ``` ![](https://img.kancloud.cn/e3/75/e3750c301c19a65431e0e9304fe1b6a8_958x551.png) ```py In[73]: college_ugds_.isnull().sum(axis=1).sort_values(ascending=False).head() Out[73]: INSTNM Excel Learning Center-San Antonio South 9 Philadelphia College of Osteopathic Medicine 9 Assemblies of God Theological Seminary 9 Episcopal Divinity School 9 Phillips Graduate Institute 9 dtype: int64 ``` ```py # 如果所有列都是缺失值,则将其去除 In[74]: college_ugds_ = college_ugds_.dropna(how='all') In[75]: college_ugds_.isnull().sum() Out[75]: UGDS_WHITE 0 UGDS_BLACK 0 UGDS_HISP 0 UGDS_ASIAN 0 .. UGDS_NHPI 0 UGDS_2MOR 0 UGDS_NRA 0 UGDS_UNKN 0 Length: 9, dtype: int64 ``` ```py # 用大于或等于方法ge(),将DataFrame变为布尔值矩阵 In[76]: college_ugds_.ge(.15).head() Out[76]: ``` ![](https://img.kancloud.cn/62/e8/62e8f9f8c8def372018f122e42b4bc33_953x542.png) ```py # 对所有True值求和 In[77]: diversity_metric = college_ugds_.ge(.15).sum(axis='columns') diversity_metric.head() Out[77]: INSTNM Alabama A & M University 1 University of Alabama at Birmingham 2 Amridge University 3 University of Alabama in Huntsville 1 Alabama State University 1 dtype: int64 ``` ```py # 使用value_counts(),查看分布情况 In[78]: diversity_metric.value_counts() Out[78]: 1 3042 2 2884 3 876 4 63 0 7 5 2 dtype: int64 ``` ```py # 查看哪些学校种群比例超过15%的数量多 In[79]: diversity_metric.sort_values(ascending=False).head() Out[79]: INSTNM Regency Beauty Institute-Austin 5 Central Texas Beauty College-Temple 5 Sullivan and Cogliano Training Center 4 Ambria College of Nursing 4 Berkeley College-New York 4 dtype: int64 ``` ```py # 用loc()方法查看对应行索引的行 In[80]: college_ugds_.loc[['Regency Beauty Institute-Austin', 'Central Texas Beauty College-Temple']] Out[80]: ``` ![](https://img.kancloud.cn/fc/c9/fcc9f6033f9c2e9a48590dc4de5d3477_954x350.png) ```py # 查看US News前五所最具多样性的大学在diversity_metric中的情况 In[81]: us_news_top = ['Rutgers University-Newark', 'Andrews University', 'Stanford University', 'University of Houston', 'University of Nevada-Las Vegas'] In[82]: diversity_metric.loc[us_news_top] Out[82]: INSTNM Rutgers University-Newark 4 Andrews University 3 Stanford University 3 University of Houston 3 University of Nevada-Las Vegas 3 dtype: int64 ``` ### 更多 ```py # 可以用最大种群比例查看哪些学校最不具有多样性 In[83]: college_ugds_.max(axis=1).sort_values(ascending=False).head(10) Out[83]: INSTNM Dewey University-Manati 1.0 Yeshiva and Kollel Harbotzas Torah 1.0 Mr Leon's School of Hair Design-Lewiston 1.0 Dewey University-Bayamon 1.0 ... Monteclaro Escuela de Hoteleria y Artes Culinarias 1.0 Yeshiva Shaar Hatorah 1.0 Bais Medrash Elyon 1.0 Yeshiva of Nitra Rabbinical College 1.0 Length: 10, dtype: float64 ``` ```py # 查看Talmudical Seminary Oholei Torah哲学学校 In[84]: college_ugds_.loc['Talmudical Seminary Oholei Torah'] Out[84]: UGDS_WHITE 1.0 UGDS_BLACK 0.0 UGDS_HISP 0.0 UGDS_ASIAN 0.0 ... UGDS_NHPI 0.0 UGDS_2MOR 0.0 UGDS_NRA 0.0 UGDS_UNKN 0.0 Name: Talmudical Seminary Oholei Torah, Length: 9, dtype: float64 ``` ```py # 查看是否有学校九个种族的比例都超过了1% In[85]: (college_ugds_ > .01).all(axis=1).any() Out[85]: True ```