多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
# 第07章 分组聚合、过滤、转换 ```py In[1]: import pandas as pd import numpy as np ``` ## 1\. 定义聚合 ```py # 读取flights数据集,查询头部 In[2]: flights = pd.read_csv('data/flights.csv') flights.head() Out[2]: ``` ![](https://img.kancloud.cn/84/1f/841f91a8dfd0c4a50097d73a9a92694c_1586x287.png) ```py # 按照AIRLINE分组,使用agg方法,传入要聚合的列和聚合函数 In[3]: flights.groupby('AIRLINE').agg({'ARR_DELAY':'mean'}).head() Out[3]: ``` ```py # 或者要选取的列使用索引,聚合函数作为字符串传入agg In[4]: flights.groupby('AIRLINE')['ARR_DELAY'].agg('mean').head() Out[4]: AIRLINE AA 5.542661 AS -0.833333 B6 8.692593 DL 0.339691 EV 7.034580 Name: ARR_DELAY, dtype: float64 ``` ![](https://img.kancloud.cn/4b/18/4b1896a1b7f503c18d0e949b204c6d7d_308x392.png) ```py # 也可以向agg中传入NumPy的mean函数 In[5]: flights.groupby('AIRLINE')['ARR_DELAY'].agg(np.mean).head() Out[5]: ``` ![](https://img.kancloud.cn/4b/18/4b1896a1b7f503c18d0e949b204c6d7d_308x392.png) ```py # 也可以直接使用mean()函数 In[6]: flights.groupby('AIRLINE')['ARR_DELAY'].mean().head() Out[6]: ``` ![](https://img.kancloud.cn/4b/18/4b1896a1b7f503c18d0e949b204c6d7d_308x392.png) ### 原理 ```py # groupby方法产生的是一个DataFrameGroupBy对象 In[7]: grouped = flights.groupby('AIRLINE') type(grouped) Out[7]: pandas.core.groupby.DataFrameGroupBy ``` ### 更多 ```py # 如果agg接收的不是聚合函数,则会导致异常 In[8]: flights.groupby('AIRLINE')['ARR_DELAY'].agg(np.sqrt) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py:842: RuntimeWarning: invalid value encountered in sqrt f = lambda x: func(x, *args, **kwargs) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py:3015: RuntimeWarning: invalid value encountered in sqrt output = func(group, *args, **kwargs) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in agg_series(self, obj, func) 2177 try: -> 2178 return self._aggregate_series_fast(obj, func) 2179 except Exception: /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in _aggregate_series_fast(self, obj, func) 2197 dummy) -> 2198 result, counts = grouper.get_result() 2199 return result, counts pandas/_libs/src/reduce.pyx in pandas._libs.lib.SeriesGrouper.get_result (pandas/_libs/lib.c:39105)() pandas/_libs/src/reduce.pyx in pandas._libs.lib.SeriesGrouper.get_result (pandas/_libs/lib.c:38973)() pandas/_libs/src/reduce.pyx in pandas._libs.lib._get_result_array (pandas/_libs/lib.c:32039)() ValueError: function does not reduce During handling of the above exception, another exception occurred: ValueError Traceback (most recent call last) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in aggregate(self, func_or_funcs, *args, **kwargs) 2882 try: -> 2883 return self._python_agg_general(func_or_funcs, *args, **kwargs) 2884 except Exception: /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in _python_agg_general(self, func, *args, **kwargs) 847 try: --> 848 result, counts = self.grouper.agg_series(obj, f) 849 output[name] = self._try_cast(result, obj, numeric_only=True) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in agg_series(self, obj, func) 2179 except Exception: -> 2180 return self._aggregate_series_pure_python(obj, func) 2181 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in _aggregate_series_pure_python(self, obj, func) 2214 isinstance(res, list)): -> 2215 raise ValueError('Function does not reduce') 2216 result = np.empty(ngroups, dtype='O') ValueError: Function does not reduce During handling of the above exception, another exception occurred: Exception Traceback (most recent call last) <ipython-input-8-2bcc9ccfec77> in <module>() ----> 1 flights.groupby('AIRLINE')['ARR_DELAY'].agg(np.sqrt) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in aggregate(self, func_or_funcs, *args, **kwargs) 2883 return self._python_agg_general(func_or_funcs, *args, **kwargs) 2884 except Exception: -> 2885 result = self._aggregate_named(func_or_funcs, *args, **kwargs) 2886 2887 index = Index(sorted(result), name=self.grouper.names[0]) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in _aggregate_named(self, func, *args, **kwargs) 3015 output = func(group, *args, **kwargs) 3016 if isinstance(output, (Series, Index, np.ndarray)): -> 3017 raise Exception('Must produce aggregated value') 3018 result[name] = self._try_cast(output, group) 3019 Exception: Must produce aggregated value ``` ## 2\. 用多个列和函数进行分组和聚合 ```py # 导入数据 In[9]: flights = pd.read_csv('data/flights.csv') flights.head() Out[9]: ``` ![](https://img.kancloud.cn/95/23/95237ec9d1c671bda18172dec74dee8f_1208x277.png) ```py # 每家航空公司每周平均每天取消的航班数 In[10]: flights.groupby(['AIRLINE', 'WEEKDAY'])['CANCELLED'].agg('sum').head(7) Out[10]: AIRLINE WEEKDAY AA 1 41 2 9 3 16 4 20 5 18 6 21 7 29 Name: CANCELLED, dtype: int64 ``` ```py # 分组可以是多组,选取可以是多组,聚合函数也可以是多个 # 每周每家航空公司取消或改变航线的航班总数和比例 In[11]: flights.groupby(['AIRLINE', 'WEEKDAY'])['CANCELLED', 'DIVERTED'].agg(['sum', 'mean']).head(7) Out[11]: ``` ![](https://img.kancloud.cn/61/fd/61fd9b885b6ce4271be941dc3192d396_506x402.png) ```py # 用列表和嵌套字典对多列分组和聚合 # 对于每条航线,找到总航班数,取消的数量和比例,飞行时间的平均时间和方差 In[12]: group_cols = ['ORG_AIR', 'DEST_AIR'] agg_dict = {'CANCELLED':['sum', 'mean', 'size'], 'AIR_TIME':['mean', 'var']} flights.groupby(group_cols).agg(agg_dict).head() # flights.groupby(['ORG_AIR', 'DEST_AIR']).agg({'CANCELLED': ['sum', 'mean', 'size'], # 'AIR_TIME':['mean', 'var']}).head() Out[12]: ``` ![](https://img.kancloud.cn/5a/f2/5af22f908008959264c2f8cc71ce3306_606x323.png) ## 3\. 分组后去除多级索引 ```py # 读取数据 In[13]: flights = pd.read_csv('data/flights.csv') flights.head() Out[13]: ``` ![](https://img.kancloud.cn/ca/90/ca9072b9015c8f8dd69ef37ed30db388_1199x278.png) ```py # 按'AIRLINE', 'WEEKDAY'分组,分别对DIST和ARR_DELAY聚合 In[14]: airline_info = flights.groupby(['AIRLINE', 'WEEKDAY'])\ .agg({'DIST':['sum', 'mean'], 'ARR_DELAY':['min', 'max']}).astype(int) airline_info.head() Out[14]: ``` ![](https://img.kancloud.cn/6b/a8/6ba868a77ced38e584f436de8243badf_486x323.png) ```py # 行和列都有两级索引,get_level_values(0)取出第一级索引 In[15]: level0 = airline_info.columns.get_level_values(0) level0 Out[15]: Index(['DIST', 'DIST', 'ARR_DELAY', 'ARR_DELAY'], dtype='object') ``` ```py # get_level_values(1)取出第二级索引 In[16]: level1 = airline_info.columns.get_level_values(1) level1 Out[16]: Index(['sum', 'mean', 'min', 'max'], dtype='object') ``` ```py # 一级和二级索引拼接成新的列索引 In[17]: airline_info.columns = level0 + '_' + level1 In[18]: airline_info.head(7) Out[18]: ``` ![](https://img.kancloud.cn/e0/81/e0812d009f99afffd7cae45880ae2701_774x368.png) ```py # reset_index()可以将行索引变成单级 In[19]: airline_info.reset_index().head(7) Out[19]: ``` ![](https://img.kancloud.cn/f3/2c/f32c538279a8c4ca7ac4c24758b436f9_800x320.png) ### 更多 ```py # Pandas默认会在分组运算后,将所有分组的列放在索引中,as_index设为False可以避免这么做。分组后使用reset_index,也可以达到同样的效果 In[20]: flights.groupby(['AIRLINE'], as_index=False)['DIST'].agg('mean').round(0) Out[20]: ``` ![](https://img.kancloud.cn/37/f4/37f40dd769088b34c628e7a56de5a151_218x589.png) ```py # 上面这么做,会默认对AIRLINE排序,sort设为False可以避免排序 In[21]: flights.groupby(['AIRLINE'], as_index=False, sort=False)['DIST'].agg('mean') Out[21]: ``` ![](https://img.kancloud.cn/20/6c/206c7c831a45a4a2fd1611c5ec1af09f_261x597.png) ## 4\. 自定义聚合函数 ```py In[22]: college = pd.read_csv('data/college.csv') college.head() Out[22]: ``` ![](https://img.kancloud.cn/13/80/13805cb054f0703ac63049748168a382_1203x558.png) ```py # 求出每个州的本科生的平均值和标准差 In[23]: college.groupby('STABBR')['UGDS'].agg(['mean', 'std']).round(0).head() Out[23]: ``` ![](https://img.kancloud.cn/8e/ed/8eed3213344d3cdb271a330f5e68b91f_257x279.png) ```py # 远离平均值的标准差的最大个数,写一个自定义函数 In[24]: def max_deviation(s): std_score = (s - s.mean()) / s.std() return std_score.abs().max() # agg聚合函数在调用方法时,直接引入自定义的函数名 In[25]: college.groupby('STABBR')['UGDS'].agg(max_deviation).round(1).head() Out[25]: STABBR AK 2.6 AL 5.8 AR 6.3 AS NaN AZ 9.9 Name: UGDS, dtype: float64 ``` ### 更多 ```py # 自定义的聚合函数也适用于多个数值列 In[26]: college.groupby('STABBR')['UGDS', 'SATVRMID', 'SATMTMID'].agg(max_deviation).round(1).head() Out[26]: ``` ![](https://img.kancloud.cn/c4/3a/c43a33d47d9e7a46481b1b47b904ad78_398x286.png) ```py # 自定义聚合函数也可以和预先定义的函数一起使用 In[27]: college.groupby(['STABBR', 'RELAFFIL'])['UGDS', 'SATVRMID', 'SATMTMID']\ .agg([max_deviation, 'mean', 'std']).round(1).head() Out[27]: ``` ![](https://img.kancloud.cn/e0/ac/e0ac7a3ebac3a9d8e4aebc8c0774108d_1021x327.png) ```py # Pandas使用函数名作为返回列的名字;你可以直接使用rename方法修改,或通过__name__属性修改 In[28]: max_deviation.__name__ Out[28]: 'max_deviation' In[29]: max_deviation.__name__ = 'Max Deviation' In[30]: college.groupby(['STABBR', 'RELAFFIL'])['UGDS', 'SATVRMID', 'SATMTMID']\ .agg([max_deviation, 'mean', 'std']).round(1).head() Out[30]: ``` ![](https://img.kancloud.cn/32/90/329061840bd3e5b4fa9e6151a129a1bd_1007x321.png) ## 5\. 用 *args 和 **kwargs 自定义聚合函数 ```py # 用inspect模块查看groupby对象的agg方法的签名 In[31]: college = pd.read_csv('data/college.csv') grouped = college.groupby(['STABBR', 'RELAFFIL']) In[32]: import inspect inspect.signature(grouped.agg) Out[32]: <Signature (arg, *args, **kwargs)> ``` ### 如何做 ```py # 自定义一个返回去本科生人数在1000和3000之间的比例的函数 In[33]: def pct_between_1_3k(s): return s.between(1000, 3000).mean() # 用州和宗教分组,再聚合 In[34]: college.groupby(['STABBR', 'RELAFFIL'])['UGDS'].agg(pct_between_1_3k).head(9) Out[34]: STABBR RELAFFIL AK 0 0.142857 1 0.000000 AL 0 0.236111 1 0.333333 AR 0 0.279412 1 0.111111 AS 0 1.000000 AZ 0 0.096774 1 0.000000 Name: UGDS, dtype: float64 ``` ```py # 但是这个函数不能让用户自定义上下限,再新写一个函数 In[35]: def pct_between(s, low, high): return s.between(low, high).mean() # 使用这个自定义聚合函数,并传入最大和最小值 In[36]: college.groupby(['STABBR', 'RELAFFIL'])['UGDS'].agg(pct_between, 1000, 10000).head(9) Out[36]: STABBR RELAFFIL AK 0 0.428571 1 0.000000 AL 0 0.458333 1 0.375000 AR 0 0.397059 1 0.166667 AS 0 1.000000 AZ 0 0.233871 1 0.111111 Name: UGDS, dtype: float64 ``` ### 原理 ```py # 显示指定最大和最小值 In[37]: college.groupby(['STABBR', 'RELAFFIL'])['UGDS'].agg(pct_between, high=10000, low=1000).head(9) Out[37]: STABBR RELAFFIL AK 0 0.428571 1 0.000000 AL 0 0.458333 1 0.375000 AR 0 0.397059 1 0.166667 AS 0 1.000000 AZ 0 0.233871 1 0.111111 Name: UGDS, dtype: float64 ``` ```py # 也可以关键字参数和非关键字参数混合使用,只要非关键字参数在后面 In[38]: college.groupby(['STABBR', 'RELAFFIL'])['UGDS'].agg(pct_between, 1000, high=10000).head(9) Out[38]: STABBR RELAFFIL AK 0 0.428571 1 0.000000 AL 0 0.458333 1 0.375000 AR 0 0.397059 1 0.166667 AS 0 1.000000 AZ 0 0.233871 1 0.111111 Name: UGDS, dtype: float64 ``` ### 更多 ```py # Pandas不支持多重聚合时,使用参数 In[39]: college.groupby(['STABBR', 'RELAFFIL'])['UGDS'].agg(['mean', pct_between], low=100, high=1000) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-39-3e3e18919cf9> in <module>() ----> 1 college.groupby(['STABBR', 'RELAFFIL'])['UGDS'].agg(['mean', pct_between], low=100, high=1000) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in aggregate(self, func_or_funcs, *args, **kwargs) 2871 if hasattr(func_or_funcs, '__iter__'): 2872 ret = self._aggregate_multiple_funcs(func_or_funcs, -> 2873 (_level or 0) + 1) 2874 else: 2875 cyfunc = self._is_cython_func(func_or_funcs) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in _aggregate_multiple_funcs(self, arg, _level) 2944 obj._reset_cache() 2945 obj._selection = name -> 2946 results[name] = obj.aggregate(func) 2947 2948 if isinstance(list(compat.itervalues(results))[0], /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in aggregate(self, func_or_funcs, *args, **kwargs) 2878 2879 if self.grouper.nkeys > 1: -> 2880 return self._python_agg_general(func_or_funcs, *args, **kwargs) 2881 2882 try: /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in _python_agg_general(self, func, *args, **kwargs) 852 853 if len(output) == 0: --> 854 return self._python_apply_general(f) 855 856 if self.grouper._filter_empty_groups: /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in _python_apply_general(self, f) 718 def _python_apply_general(self, f): 719 keys, values, mutated = self.grouper.apply(f, self._selected_obj, --> 720 self.axis) 721 722 return self._wrap_applied_output( /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in apply(self, f, data, axis) 1800 # group might be modified 1801 group_axes = _get_axes(group) -> 1802 res = f(group) 1803 if not _is_indexed_like(res, group_axes): 1804 mutated = True /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in <lambda>(x) 840 def _python_agg_general(self, func, *args, **kwargs): 841 func = self._is_builtin_func(func) --> 842 f = lambda x: func(x, *args, **kwargs) 843 844 # iterate through "columns" ex exclusions to populate output dict TypeError: pct_between() missing 2 required positional arguments: 'low' and 'high' ``` ```py # 用闭包自定义聚合函数 In[40]: def make_agg_func(func, name, *args, **kwargs): def wrapper(x): return func(x, *args, **kwargs) wrapper.__name__ = name return wrapper my_agg1 = make_agg_func(pct_between, 'pct_1_3k', low=1000, high=3000) my_agg2 = make_agg_func(pct_between, 'pct_10_30k', 10000, 30000)['UGDS'].agg(pct_between, 1000, high=10000).head(9) Out[41]: ``` ![](https://img.kancloud.cn/cb/7b/cb7bb962cf65810d9eb93f69c645043b_736x394.png) ## 6\. 检查分组对象 ```py # 查看分组对象的类型 In[42]: college = pd.read_csv('data/college.csv') grouped = college.groupby(['STABBR', 'RELAFFIL']) type(grouped) Out[42]: pandas.core.groupby.DataFrameGroupBy ``` ```py # 用dir函数找到该对象所有的可用函数 In[43]: print([attr for attr in dir(grouped) if not attr.startswith('_')]) ['CITY', 'CURROPER', 'DISTANCEONLY', 'GRAD_DEBT_MDN_SUPP', 'HBCU', 'INSTNM', 'MD_EARN_WNE_P10', 'MENONLY', 'PCTFLOAN', 'PCTPELL', 'PPTUG_EF', 'RELAFFIL', 'SATMTMID', 'SATVRMID', 'STABBR', 'UG25ABV', 'UGDS', 'UGDS_2MOR', 'UGDS_AIAN', 'UGDS_ASIAN', 'UGDS_BLACK', 'UGDS_HISP', 'UGDS_NHPI', 'UGDS_NRA', 'UGDS_UNKN', 'UGDS_WHITE', 'WOMENONLY', 'agg', 'aggregate', 'all', 'any', 'apply', 'backfill', 'bfill', 'boxplot', 'corr', 'corrwith', 'count', 'cov', 'cumcount', 'cummax', 'cummin', 'cumprod', 'cumsum', 'describe', 'diff', 'dtypes', 'expanding', 'ffill', 'fillna', 'filter', 'first', 'get_group', 'groups', 'head', 'hist', 'idxmax', 'idxmin', 'indices', 'last', 'mad', 'max', 'mean', 'median', 'min', 'ndim', 'ngroup', 'ngroups', 'nth', 'nunique', 'ohlc', 'pad', 'pct_change', 'plot', 'prod', 'quantile', 'rank', 'resample', 'rolling', 'sem', 'shift', 'size', 'skew', 'std', 'sum', 'tail', 'take', 'transform', 'tshift', 'var'] ``` ```py # 用ngroups属性查看分组的数量 In[44]: grouped.ngroups Out[44]: 112 ``` ```py # 查看每个分组的唯一识别标签,groups属性是一个字典,包含每个独立分组与行索引标签的对应 In[45]: groups = list(grouped.groups.keys()) groups[:6] Out[45]: [('AK', 0), ('AK', 1), ('AL', 0), ('AL', 1), ('AR', 0), ('AR', 1)] ``` ```py # 用get_group,传入分组标签的元组。例如,获取佛罗里达州所有与宗教相关的学校 In[46]: grouped.get_group(('FL', 1)).head() Out[46]: ``` ![](https://img.kancloud.cn/97/50/9750b149e8bc486dee83a355bd50df97_1211x554.png) ```py # groupby对象是一个可迭代对象,可以挨个查看每个独立分组 In[47]: from IPython.display import display In[48]: i = 0 for name, group in grouped: print(name) display(group.head(2)) i += 1 if i == 5: break ``` ![](https://img.kancloud.cn/3a/1d/3a1d5d6c135af87c81f82f55c7fcbce4_1220x959.png)![](https://img.kancloud.cn/88/90/889079c4093525b13b9a08187be9e3b2_1207x761.png) ```py # groupby对象使用head方法,可以在一个DataFrame钟显示每个分组的头几行 In[49]: grouped.head(2).head(6) Out[49]: ``` ![](https://img.kancloud.cn/87/2d/872da11a3ea362f83374d2d82b5c7e27_1201x618.png) ### 更多 ```py # nth方法可以选出每个分组指定行的数据,下面选出的是第1行和最后1行 In[50]: grouped.nth([1, -1]).head(8) Out[50]: ``` ![](https://img.kancloud.cn/fe/b2/feb2843fb4665c94c152e01a694587e9_1205x864.png) ## 7\. 过滤状态 ```py In[51]: college = pd.read_csv('data/college.csv', index_col='INSTNM') grouped = college.groupby('STABBR') grouped.ngroups Out[51]: 59 ``` ```py # 这等于求出不同州的个数,nunique()可以得到同样的结果 In[52]: college['STABBR'].nunique() Out[52]: 59 ``` ```py # 自定义一个计算少数民族学生总比例的函数,如果比例大于阈值,还返回True In[53]: def check_minority(df, threshold): minority_pct = 1 - df['UGDS_WHITE'] total_minority = (df['UGDS'] * minority_pct).sum() total_ugds = df['UGDS'].sum() total_minority_pct = total_minority / total_ugds return total_minority_pct > threshold # grouped变量有一个filter方法,可以接收一个自定义函数,决定是否保留一个分组 In[54]: college_filtered = grouped.filter(check_minority, threshold=.5) college_filtered.head() Out[54]: ``` ![](https://img.kancloud.cn/63/73/63730701558f75d1142f824a8c1d86a6_1196x641.png) ```py # 通过查看形状,可以看到过滤了60%,只有20个州的少数学生占据多数 In[55]: college.shape Out[55]: (7535, 26) In[56]: college_filtered.shape Out[56]: (3028, 26) In[57]: college_filtered['STABBR'].nunique() Out[57]: 20 ``` ### 更多 ```py # 用一些不同的阈值,检查形状和不同州的个数 In[58]: college_filtered_20 = grouped.filter(check_minority, threshold=.2) college_filtered_20.shape Out[58]: (7461, 26) In[59]: college_filtered_20['STABBR'].nunique() Out[59]: 57 In[60]: college_filtered_70 = grouped.filter(check_minority, threshold=.7) college_filtered_70.shape Out[60]: (957, 26) In[61]: college_filtered_70['STABBR'].nunique() Out[61]: 10 In[62]: college_filtered_95 = grouped.filter(check_minority, threshold=.95) college_filtered_95.shape Out[62]: (156, 26) ``` ## 8\. 减肥对赌 ```py # 读取减肥数据集,查看一月的数据 In[63]: weight_loss = pd.read_csv('data/weight_loss.csv') weight_loss.query('Month == "Jan"') Out[63]: ``` ![](https://img.kancloud.cn/d9/72/d972c0257ba95413f96fc2ad89dd068c_336x356.png) ```py # 定义一个求减肥比例的函数 In[64]: def find_perc_loss(s): return (s - s.iloc[0]) / s.iloc[0] # 查看Bob在一月的减肥成果 In[65]: bob_jan = weight_loss.query('Name=="Bob" and Month=="Jan"') find_perc_loss(bob_jan['Weight']) Out[65]: 0 0.000000 2 -0.010309 4 -0.027491 6 -0.027491 Name: Weight, dtype: float64 ``` ```py # 对Name和Month进行分组,然后使用transform方法,传入函数,对数值进行转换 In[66]: pcnt_loss = weight_loss.groupby(['Name', 'Month'])['Weight'].transform(find_perc_loss) pcnt_loss.head(8) Out[66]: 0 0.000000 1 0.000000 2 -0.010309 3 -0.040609 4 -0.027491 5 -0.040609 6 -0.027491 7 -0.035533 Name: Weight, dtype: float64 ``` ```py # transform之后的结果,行数不变,可以赋值给原始DataFrame作为一个新列; # 为了缩短输出,只选择Bob的前两个月数据 In[67]: weight_loss['Perc Weight Loss'] = pcnt_loss.round(3) weight_loss.query('Name=="Bob" and Month in ["Jan", "Feb"]') Out[67]: ``` ![](https://img.kancloud.cn/5f/66/5f66f015237c3664e2dc20c66bfee0fb_513x357.png) ```py # 因为最重要的是每个月的第4周,只选择第4周的数据 In[68]: week4 = weight_loss.query('Week == "Week 4"') week4 Out[68]: ``` ![](https://img.kancloud.cn/cf/a3/cfa39cca5c1f89e56ed3c7f616752756_518x360.png) ```py # 用pivot重构DataFrame,让Amy和Bob的数据并排放置 In[69]: winner = week4.pivot(index='Month', columns='Name', values='Perc Weight Loss') winner Out[69]: ``` ![](https://img.kancloud.cn/ee/7d/ee7dcd376a738aeef55c8f23c43b4a3a_316x324.png) ```py # 用where方法选出每月的赢家 In[70]: winner['Winner'] = np.where(winner['Amy'] < winner['Bob'], 'Amy', 'Bob') winner.style.highlight_min(axis=1) Out[70]: ``` ![](https://img.kancloud.cn/69/e0/69e0ff2f51965f93f3580cdf652a5602_398x314.png) ```py # 用value_counts()返回最后的比分 In[71]: winner.Winner.value_counts() Out[71]: Amy 3 Bob 1 Name: Winner, dtype: int64 ``` ### 更多 ```py # Pandas默认是按字母排序的 In[72]: week4a = week4.copy() month_chron = week4a['Month'].unique() month_chron Out[72]: array(['Jan', 'Feb', 'Mar', 'Apr'], dtype=object) ``` ```py # 转换为Categorical变量,可以做成按时间排序 In[73]: week4a['Month'] = pd.Categorical(week4a['Month'], categories=month_chron, ordered=True) week4a.pivot(index='Month', columns='Name', values='Perc Weight Loss') Out[73]: ``` ![](https://img.kancloud.cn/27/73/277305480bbbe4bcba4890813211b01b_217x238.png) ## 9\. 用apply计算每州的加权平均SAT分数 ```py # 读取college,'UGDS', 'SATMTMID', 'SATVRMID'三列如果有缺失值则删除行 In[74]: college = pd.read_csv('data/college.csv') subset = ['UGDS', 'SATMTMID', 'SATVRMID'] college2 = college.dropna(subset=subset) college.shape Out[74]: (7535, 27) In[75]: college2.shape Out[75]: (1184, 27) ``` ```py # 自定义一个求SAT数学成绩的加权平均值的函数 In[76]: def weighted_math_average(df): weighted_math = df['UGDS'] * df['SATMTMID'] return int(weighted_math.sum() / df['UGDS'].sum()) # 按州分组,并调用apply方法,传入自定义函数 In[77]: college2.groupby('STABBR').apply(weighted_math_average).head() Out[77]: STABBR AK 503 AL 536 AR 529 AZ 569 CA 564 dtype: int64 ``` ```py # 效果同上 In[78]: college2.groupby('STABBR').agg(weighted_math_average).head() Out[78]: ``` ![](https://img.kancloud.cn/0c/0e/0c0e37b8e7554b01758a8fe8a649f64e_1205x368.png) ```py # 如果将列限制到SATMTMID,会报错。这是因为不能访问UGDS。 In[79]: college2.groupby('STABBR')['SATMTMID'].agg(weighted_math_average) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.Int64HashTable.get_item (pandas/_libs/hashtable.c:14010)() TypeError: an integer is required During handling of the above exception, another exception occurred: KeyError Traceback (most recent call last) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in agg_series(self, obj, func) 2177 try: -> 2178 return self._aggregate_series_fast(obj, func) 2179 except Exception: /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in _aggregate_series_fast(self, obj, func) 2197 dummy) -> 2198 result, counts = grouper.get_result() 2199 return result, counts pandas/_libs/src/reduce.pyx in pandas._libs.lib.SeriesGrouper.get_result (pandas/_libs/lib.c:39105)() pandas/_libs/src/reduce.pyx in pandas._libs.lib.SeriesGrouper.get_result (pandas/_libs/lib.c:38888)() /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in <lambda>(x) 841 func = self._is_builtin_func(func) --> 842 f = lambda x: func(x, *args, **kwargs) 843 <ipython-input-76-01eb90aa258d> in weighted_math_average(df) 1 def weighted_math_average(df): ----> 2 weighted_math = df['UGDS'] * df['SATMTMID'] 3 return int(weighted_math.sum() / df['UGDS'].sum()) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/series.py in __getitem__(self, key) 600 try: --> 601 result = self.index.get_value(self, key) 602 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_value(self, series, key) 2476 return self._engine.get_value(s, k, -> 2477 tz=getattr(series.dtype, 'tz', None)) 2478 except KeyError as e1: pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value (pandas/_libs/index.c:4404)() pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value (pandas/_libs/index.c:4087)() pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5210)() KeyError: 'UGDS' During handling of the above exception, another exception occurred: TypeError Traceback (most recent call last) pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.Int64HashTable.get_item (pandas/_libs/hashtable.c:14010)() TypeError: an integer is required During handling of the above exception, another exception occurred: KeyError Traceback (most recent call last) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in aggregate(self, func_or_funcs, *args, **kwargs) 2882 try: -> 2883 return self._python_agg_general(func_or_funcs, *args, **kwargs) 2884 except Exception: /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in _python_agg_general(self, func, *args, **kwargs) 847 try: --> 848 result, counts = self.grouper.agg_series(obj, f) 849 output[name] = self._try_cast(result, obj, numeric_only=True) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in agg_series(self, obj, func) 2179 except Exception: -> 2180 return self._aggregate_series_pure_python(obj, func) 2181 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in _aggregate_series_pure_python(self, obj, func) 2210 for label, group in splitter: -> 2211 res = func(group) 2212 if result is None: /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in <lambda>(x) 841 func = self._is_builtin_func(func) --> 842 f = lambda x: func(x, *args, **kwargs) 843 <ipython-input-76-01eb90aa258d> in weighted_math_average(df) 1 def weighted_math_average(df): ----> 2 weighted_math = df['UGDS'] * df['SATMTMID'] 3 return int(weighted_math.sum() / df['UGDS'].sum()) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/series.py in __getitem__(self, key) 600 try: --> 601 result = self.index.get_value(self, key) 602 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_value(self, series, key) 2476 return self._engine.get_value(s, k, -> 2477 tz=getattr(series.dtype, 'tz', None)) 2478 except KeyError as e1: pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value (pandas/_libs/index.c:4404)() pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value (pandas/_libs/index.c:4087)() pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5210)() KeyError: 'UGDS' During handling of the above exception, another exception occurred: TypeError Traceback (most recent call last) pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.Int64HashTable.get_item (pandas/_libs/hashtable.c:14010)() TypeError: an integer is required During handling of the above exception, another exception occurred: KeyError Traceback (most recent call last) <ipython-input-79-1351e4f306c7> in <module>() ----> 1 college2.groupby('STABBR')['SATMTMID'].agg(weighted_math_average) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in aggregate(self, func_or_funcs, *args, **kwargs) 2883 return self._python_agg_general(func_or_funcs, *args, **kwargs) 2884 except Exception: -> 2885 result = self._aggregate_named(func_or_funcs, *args, **kwargs) 2886 2887 index = Index(sorted(result), name=self.grouper.names[0]) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/groupby.py in _aggregate_named(self, func, *args, **kwargs) 3013 for name, group in self: 3014 group.name = name -> 3015 output = func(group, *args, **kwargs) 3016 if isinstance(output, (Series, Index, np.ndarray)): 3017 raise Exception('Must produce aggregated value') <ipython-input-76-01eb90aa258d> in weighted_math_average(df) 1 def weighted_math_average(df): ----> 2 weighted_math = df['UGDS'] * df['SATMTMID'] 3 return int(weighted_math.sum() / df['UGDS'].sum()) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/series.py in __getitem__(self, key) 599 key = com._apply_if_callable(key, self) 600 try: --> 601 result = self.index.get_value(self, key) 602 603 if not is_scalar(result): /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_value(self, series, key) 2475 try: 2476 return self._engine.get_value(s, k, -> 2477 tz=getattr(series.dtype, 'tz', None)) 2478 except KeyError as e1: 2479 if len(self) > 0 and self.inferred_type in ['integer', 'boolean']: pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value (pandas/_libs/index.c:4404)() pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value (pandas/_libs/index.c:4087)() pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5210)() KeyError: 'UGDS' ``` ```py # apply的一个不错的功能是通过返回Series,创建多个新的列 In[80]: from collections import OrderedDict def weighted_average(df): data = OrderedDict() weight_m = df['UGDS'] * df['SATMTMID'] weight_v = df['UGDS'] * df['SATVRMID'] data['weighted_math_avg'] = weight_m.sum() / df['UGDS'].sum() data['weighted_verbal_avg'] = weight_v.sum() / df['UGDS'].sum() data['math_avg'] = df['SATMTMID'].mean() data['verbal_avg'] = df['SATVRMID'].mean() data['count'] = len(df) return pd.Series(data, dtype='int') college2.groupby('STABBR').apply(weighted_average).head(10) Out[80]: ``` ![](https://img.kancloud.cn/69/ed/69ed3283c97889dc1aa896b47fee2341_1046x662.png) ```py # 多创建两个新的列 In[81]: from collections import OrderedDict def weighted_average(df): data = OrderedDict() weight_m = df['UGDS'] * df['SATMTMID'] weight_v = df['UGDS'] * df['SATVRMID'] wm_avg = weight_m.sum() / df['UGDS'].sum() wv_avg = weight_v.sum() / df['UGDS'].sum() data['weighted_math_avg'] = wm_avg data['weighted_verbal_avg'] = wv_avg data['math_avg'] = df['SATMTMID'].mean() data['verbal_avg'] = df['SATVRMID'].mean() data['count'] = len(df) return pd.Series(data, dtype='int') college2.groupby('STABBR').apply(weighted_average).head(10) Out[81]: ``` ![](https://img.kancloud.cn/09/b1/09b10bf7861fd2aa2e1acd063fe79eea_780x474.png) ### 更多 ```py # 自定义一个返回DataFrame的函数,使用NumPy的函数average计算加权平均值,使用SciPy的gmean和hmean计算几何和调和平均值 In[82]: from scipy.stats import gmean, hmean def calculate_means(df): df_means = pd.DataFrame(index=['Arithmetic', 'Weighted', 'Geometric', 'Harmonic']) cols = ['SATMTMID', 'SATVRMID'] for col in cols: arithmetic = df[col].mean() weighted = np.average(df[col], weights=df['UGDS']) geometric = gmean(df[col]) harmonic = hmean(df[col]) df_means[col] = [arithmetic, weighted, geometric, harmonic] df_means['count'] = len(df) return df_means.astype(int) college2.groupby('STABBR').filter(lambda x: len(x) != 1).groupby('STABBR').apply(calculate_means).head(10) Out[82]: ``` ![](https://img.kancloud.cn/c8/fb/c8fb3acf60196c58a371ee41140e954d_504x472.png) ## 10\. 用连续变量分组 ```py In[83]: flights = pd.read_csv('data/flights.csv') flights.head() Out[83]: ``` ![](https://img.kancloud.cn/8c/22/8c221c1001d15c5249ee308be9c75365_1202x277.png) ```py # 判断DIST列有无缺失值 In[84]: flights.DIST.hasnans Out[84]: False ``` ```py # 再次删除DIST列的缺失值(原书是没有这两段的) In[85]: flights.dropna(subset=['DIST']).shape Out[85]: (58492, 14) ``` ```py # 使用Pandas的cut函数,将数据分成5个面元 In[86]: bins = [-np.inf, 200, 500, 1000, 2000, np.inf] cuts = pd.cut(flights['DIST'], bins=bins) cuts.head() Out[86]: 0 (500.0, 1000.0] 1 (1000.0, 2000.0] 2 (500.0, 1000.0] 3 (1000.0, 2000.0] 4 (1000.0, 2000.0] Name: DIST, dtype: category Categories (5, interval[float64]): [(-inf, 200.0] < (200.0, 500.0] < (500.0, 1000.0] < (1000.0, 2000.0] < (2000.0, inf]] ``` ```py # 对每个面元进行统计 In[87]: cuts.value_counts() Out[87]: (500.0, 1000.0] 20659 (200.0, 500.0] 15874 (1000.0, 2000.0] 14186 (2000.0, inf] 4054 (-inf, 200.0] 3719 Name: DIST, dtype: int64 ``` ```py # 面元Series可以用来进行分组 In[88]: flights.groupby(cuts)['AIRLINE'].value_counts(normalize=True).round(3).head(15) Out[88]: DIST AIRLINE (-inf, 200.0] OO 0.326 EV 0.289 MQ 0.211 DL 0.086 AA 0.052 UA 0.027 WN 0.009 (200.0, 500.0] WN 0.194 DL 0.189 OO 0.159 EV 0.156 MQ 0.100 AA 0.071 UA 0.062 VX 0.028 Name: AIRLINE, dtype: float64 ``` ### 原理 ```py In[89]: flights.groupby(cuts)['AIRLINE'].value_counts(normalize=True)['AIRLINE'].value_counts(normalize=True).round(3).head(15) Out[89]: DIST AIRLINE (-inf, 200.0] OO 0.325625 EV 0.289325 MQ 0.210809 DL 0.086045 AA 0.052165 UA 0.027427 WN 0.008604 (200.0, 500.0] WN 0.193902 DL 0.188736 OO 0.158687 EV 0.156293 MQ 0.100164 AA 0.071375 UA 0.062051 VX 0.028222 US 0.016001 NK 0.011843 B6 0.006867 F9 0.004914 AS 0.000945 (500.0, 1000.0] DL 0.205625 AA 0.143908 WN 0.138196 UA 0.131129 OO 0.106443 EV 0.100683 MQ 0.051213 F9 0.038192 NK 0.029527 US 0.025316 AS 0.023234 VX 0.003582 B6 0.002953 (1000.0, 2000.0] AA 0.263781 UA 0.199070 DL 0.165092 WN 0.159664 OO 0.046454 NK 0.045115 US 0.040462 F9 0.030664 AS 0.015931 EV 0.015579 VX 0.012125 B6 0.003313 MQ 0.002749 (2000.0, inf] UA 0.289097 AA 0.211643 DL 0.171436 B6 0.080414 VX 0.073754 US 0.065121 WN 0.046374 HA 0.027627 NK 0.019240 AS 0.011593 F9 0.003700 Name: AIRLINE, dtype: float64 ``` ### 更多 ```py # 求飞行时间的0.25,0.5,0.75分位数 In[90]: flights.groupby(cuts)['AIR_TIME'].quantile(q=[.25, .5, .75]).div(60).round(2) Out[90]: DIST (-inf, 200.0] 0.25 0.43 0.50 0.50 0.75 0.57 (200.0, 500.0] 0.25 0.77 0.50 0.92 0.75 1.05 (500.0, 1000.0] 0.25 1.43 0.50 1.65 0.75 1.92 (1000.0, 2000.0] 0.25 2.50 0.50 2.93 0.75 3.40 (2000.0, inf] 0.25 4.30 0.50 4.70 0.75 5.03 Name: AIR_TIME, dtype: float64 ``` ```py # unstack方法可以将内层的索引变为列名 In[91]: labels=['Under an Hour', '1 Hour', '1-2 Hours', '2-4 Hours', '4+ Hours'] cuts2 = pd.cut(flights['DIST'], bins=bins, labels=labels) flights.groupby(cuts2)['AIRLINE'].value_counts(normalize=True).round(3).unstack().style.highlight_max(axis=1) Out[91]: ``` ![](https://img.kancloud.cn/23/b6/23b60afb08fd70934bc7b9d000e4e7f3_1434x404.png) ## 11\. 计算城市之间的航班总数 ```py In[92]: flights = pd.read_csv('data/flights.csv') flights.head() Out[92]: ``` ![](https://img.kancloud.cn/da/75/da75dbc5a01ad36db192d0ec696c894f_1203x270.png) ```py # 求每两个城市间的航班总数 In[93]: flights_ct = flights.groupby(['ORG_AIR', 'DEST_AIR']).size() flights_ct.head() Out[93]: ORG_AIR DEST_AIR ATL ABE 31 ABQ 16 ABY 19 ACY 6 AEX 40 dtype: int64 ``` ```py # 选出休斯顿(IAH)和亚特兰大(ATL)之间双方向的航班总数 In[94]: flights_ct.loc[[('ATL', 'IAH'), ('IAH', 'ATL')]] Out[94]: ORG_AIR DEST_AIR ATL IAH 121 IAH ATL 148 dtype: int64 ``` ```py # 分别对每行按照出发地和目的地,按字母排序 In[95]: flights_sort = flights[['ORG_AIR', 'DEST_AIR']].apply(sorted, axis=1) flights_sort.head() Out[95]: ``` ![](https://img.kancloud.cn/a9/3a/a93a277341b02b98c3261e33e0f9d37d_249x244.png) ```py # 因为现在每行都是独立排序的,列名存在问题。对列重命名,然后再计算所有城市间的航班数 In[96]: rename_dict = {'ORG_AIR':'AIR1','DEST_AIR':'AIR2'} flights_sort = flights_sort.rename(columns=rename_dict) flights_ct2 = flights_sort.groupby(['AIR1', 'AIR2']).size() flights_ct2.head() Out[96]: AIR1 AIR2 ABE ATL 31 ORD 24 ABI DFW 74 ABQ ATL 16 DEN 46 dtype: int64 ``` ```py # 找到亚特兰大和休斯顿之间的航班数 In[97]: flights_ct2.loc[('ATL', 'IAH')] Out[97]: 269 ``` ```py # 如果调换顺序,则会出错 In[98]: flights_ct2.loc[('IAH', 'ATL')] --------------------------------------------------------------------------- IndexingError Traceback (most recent call last) <ipython-input-98-56147a7d0bb5> in <module>() ----> 1 flights_ct2.loc[('IAH', 'ATL')] /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/indexing.py in __getitem__(self, key) 1323 except (KeyError, IndexError): 1324 pass -> 1325 return self._getitem_tuple(key) 1326 else: 1327 key = com._apply_if_callable(key, self.obj) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/indexing.py in _getitem_tuple(self, tup) 839 840 # no multi-index, so validate all of the indexers --> 841 self._has_valid_tuple(tup) 842 843 # ugly hack for GH #836 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/indexing.py in _has_valid_tuple(self, key) 186 for i, k in enumerate(key): 187 if i >= self.obj.ndim: --> 188 raise IndexingError('Too many indexers') 189 if not self._has_valid_type(k, i): 190 raise ValueError("Location based indexing can only have [%s] " IndexingError: Too many indexers ``` ### 更多 ```py # 用NumPy的sort函数可以大大提高速度 In[99]: data_sorted = np.sort(flights[['ORG_AIR', 'DEST_AIR']]) data_sorted[:10] Out[99]: array([['LAX', 'SLC'], ['DEN', 'IAD'], ['DFW', 'VPS'], ['DCA', 'DFW'], ['LAX', 'MCI'], ['IAH', 'SAN'], ['DFW', 'MSY'], ['PHX', 'SFO'], ['ORD', 'STL'], ['IAH', 'SJC']], dtype=object) ``` ```py # 重新用DataFrame构造器创建一个DataFrame,检测其是否与flights_sorted相等 In[100]: flights_sort2 = pd.DataFrame(data_sorted, columns=['AIR1', 'AIR2']) fs_orig = flights_sort.rename(columns={'ORG_AIR':'AIR1', 'DEST_AIR':'AIR2'}) flights_sort2.equals(fs_orig) Out[100]: True ``` ```py # 比较速度 In[101]: %timeit flights_sort = flights[['ORG_AIR', 'DEST_AIR']].apply(sorted, axis=1) 7.82 s ± 189 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) In[102]: %%timeit data_sorted = np.sort(flights[['ORG_AIR', 'DEST_AIR']]) flights_sort2 = pd.DataFrame(data_sorted, columns=['AIR1', 'AIR2']) 10.9 ms ± 325 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) ``` ## 12\. 找到持续最长的准时航班 ```py # 创建一个Series In[103]: s = pd.Series([1, 1, 1, 0, 1, 1, 1, 0]) s Out[103]: 0 1 1 1 2 1 3 0 4 1 5 1 6 1 7 0 dtype: int64 ``` ```py # 累积求和 In[104]: s1 = s.cumsum() s1 Out[104]: 0 1 1 2 2 3 3 3 4 4 5 5 6 6 7 6 dtype: int64 ``` ```py In[105]: s.mul(s1).diff() Out[105]: 0 NaN 1 1.0 2 1.0 3 -3.0 4 4.0 5 1.0 6 1.0 7 -6.0 dtype: float64 ``` ```py # 将所有非负值变为缺失值 In[106]: s.mul(s1).diff().where(lambda x: x < 0) Out[106]: 0 NaN 1 NaN 2 NaN 3 -3.0 4 NaN 5 NaN 6 NaN 7 -6.0 dtype: float64 ``` ```py In[107]: s.mul(s1).diff().where(lambda x: x < 0).ffill().add(s1, fill_value=0) Out[107]: 0 1.0 1 2.0 2 3.0 3 0.0 4 1.0 5 2.0 6 3.0 7 0.0 dtype: float64 ``` ```py # 创建一个准时的列 ON_TIME In[108]: flights = pd.read_csv('data/flights.csv') flights['ON_TIME'] = flights['ARR_DELAY'].lt(15).astype(int) flights[['AIRLINE', 'ORG_AIR', 'ON_TIME']].head(10) Out[108]: ``` ![](https://img.kancloud.cn/0a/84/0a8472d2d9141b9647e80902ba75496a_332x439.png) ```py # 将之前的逻辑做成一个函数 In[109]: def max_streak(s): s1 = s.cumsum() return s.mul(s1).diff().where(lambda x: x < 0) \ .ffill().add(s1, fill_value=0).max() In[110]: flights.sort_values(['MONTH', 'DAY', 'SCHED_DEP']) \ .groupby(['AIRLINE', 'ORG_AIR'])['ON_TIME'] \ .agg(['mean', 'size', max_streak]).round(2).head() Out[110]: ``` ![](https://img.kancloud.cn/1a/c0/1ac060299bab2b14c4c5ecf3dda9a937_443x280.png) ### 更多 ```py # 求最长的延误航班 In[111]: def max_delay_streak(df): df = df.reset_index(drop=True) s = 1 - df['ON_TIME'] s1 = s.cumsum() streak = s.mul(s1).diff().where(lambda x: x < 0) \ .ffill().add(s1, fill_value=0) last_idx = streak.idxmax() first_idx = last_idx - streak.max() + 1 df_return = df.loc[[first_idx, last_idx], ['MONTH', 'DAY']] df_return['streak'] = streak.max() df_return.index = ['first', 'last'] df_return.index.name='streak_row' return df_return In[112]: flights.sort_values(['MONTH', 'DAY', 'SCHED_DEP']) \ .groupby(['AIRLINE', 'ORG_AIR']) \ .apply(max_delay_streak) \ .sort_values(['streak','MONTH','DAY'], ascending=[False, True, True]).head(10) Out[112]: ``` ![](https://img.kancloud.cn/1f/2d/1f2d25493dd993fff25b2220b3686e95_527x476.png)