🔥码云GVP开源项目 12k star Uniapp+ElementUI 功能强大 支持多语言、二开方便! 广告
# 第 8 章 数据规整:聚合、合并和重塑 在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析。本章关注可以聚合、合并、重塑数据的方法。 首先,我会介绍pandas的层次化索引,它广泛用于以上操作。然后,我深入介绍了一些特殊的数据操作。在第14章,你可以看到这些工具的多种应用。 # 8.1 层次化索引 层次化索引(hierarchical indexing)是pandas的一项重要功能,它使你能在一个轴上拥有多个(两个以上)索引级别。抽象点说,它使你能以低维度形式处理高维度数据。我们先来看一个简单的例子:创建一个Series,并用一个由列表或数组组成的列表作为索引: ```python In [9]: data = pd.Series(np.random.randn(9), ...: index=[['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'd'], ...: [1, 2, 3, 1, 3, 1, 2, 2, 3]]) In [10]: data Out[10]: a 1 -0.204708 2 0.478943 3 -0.519439 b 1 -0.555730 3 1.965781 c 1 1.393406 2 0.092908 d 2 0.281746 3 0.769023 dtype: float64 ``` 看到的结果是经过美化的带有MultiIndex索引的Series的格式。索引之间的“间隔”表示“直接使用上面的标签”: ```python In [11]: data.index Out[11]: MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 2, 0, 1, 1, 2]]) ``` 对于一个层次化索引的对象,可以使用所谓的部分索引,使用它选取数据子集的操作更简单: ```python In [12]: data['b'] Out[12]: 1 -0.555730 3 1.965781 dtype: float64 In [13]: data['b':'c'] Out[13]: b 1 -0.555730 3 1.965781 c 1 1.393406 2 0.092908 dtype: float64 In [14]: data.loc[['b', 'd']] Out[14]: b 1 -0.555730 3 1.965781 d 2 0.281746 3 0.769023 dtype: float64 ``` 有时甚至还可以在“内层”中进行选取: ```python In [15]: data.loc[:, 2] Out[15]: a 0.478943 c 0.092908 d 0.281746 dtype: float64 ``` 层次化索引在数据重塑和基于分组的操作(如透视表生成)中扮演着重要的角色。例如,可以通过unstack方法将这段数据重新安排到一个DataFrame中: ```python In [16]: data.unstack() Out[16]: 1 2 3 a -0.204708 0.478943 -0.519439 b -0.555730 NaN 1.965781 c 1.393406 0.092908 NaN d NaN 0.281746 0.769023 ``` unstack的逆运算是stack: ```python In [17]: data.unstack().stack() Out[17]: a 1 -0.204708 2 0.478943 3 -0.519439 b 1 -0.555730 3 1.965781 c 1 1.393406 2 0.092908 d 2 0.281746 3 0.769023 dtype: float64 ``` stack和unstack将在本章后面详细讲解。 对于一个DataFrame,每条轴都可以有分层索引: ```python In [18]: frame = pd.DataFrame(np.arange(12).reshape((4, 3)), ....: index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]], ....: columns=[['Ohio', 'Ohio', 'Colorado'], ....: ['Green', 'Red', 'Green']]) In [19]: frame Out[19]: Ohio Colorado Green Red Green a 1 0 1 2 2 3 4 5 b 1 6 7 8 2 9 10 11 ``` 各层都可以有名字(可以是字符串,也可以是别的Python对象)。如果指定了名称,它们就会显示在控制台输出中: ```python In [20]: frame.index.names = ['key1', 'key2'] In [21]: frame.columns.names = ['state', 'color'] In [22]: frame Out[22]: state Ohio Colorado color Green Red Green key1 key2 a 1 0 1 2 2 3 4 5 b 1 6 7 8 2 9 10 11 ``` >注意:小心区分索引名state、color与行标签。 有了部分列索引,因此可以轻松选取列分组: ```python In [23]: frame['Ohio'] Out[23]: color Green Red key1 key2 a 1 0 1 2 3 4 b 1 6 7 2 9 10 ``` 可以单独创建MultiIndex然后复用。上面那个DataFrame中的(带有分级名称)列可以这样创建: ```python MultiIndex.from_arrays([['Ohio', 'Ohio', 'Colorado'], ['Green', 'Red', 'Green']], names=['state', 'color']) ``` ## 重排与分级排序 有时,你需要重新调整某条轴上各级别的顺序,或根据指定级别上的值对数据进行排序。swaplevel接受两个级别编号或名称,并返回一个互换了级别的新对象(但数据不会发生变化): ```python In [24]: frame.swaplevel('key1', 'key2') Out[24]: state Ohio Colorado color Green Red Green key2 key1 1 a 0 1 2 2 a 3 4 5 1 b 6 7 8 2 b 9 10 11 ``` 而sort_index则根据单个级别中的值对数据进行排序。交换级别时,常常也会用到sort_index,这样最终结果就是按照指定顺序进行字母排序了: ```python In [25]: frame.sort_index(level=1) Out[25]: state Ohio Colorado color Green Red Green key1 key2 a 1 0 1 2 b 1 6 7 8 a 2 3 4 5 b 2 9 10 11 In [26]: frame.swaplevel(0, 1).sort_index(level=0) Out[26]: state Ohio Colorado color Green Red Green key2 key1 1 a 0 1 2 b 6 7 8 2 a 3 4 5 b 9 10 11 ``` ## 根据级别汇总统计 许多对DataFrame和Series的描述和汇总统计都有一个level选项,它用于指定在某条轴上求和的级别。再以上面那个DataFrame为例,我们可以根据行或列上的级别来进行求和: ```python In [27]: frame.sum(level='key2') Out[27]: state Ohio Colorado color Green Red Green key2 1 6 8 10 2 12 14 16 In [28]: frame.sum(level='color', axis=1) Out[28]: color Green Red key1 key2 a 1 2 1 2 8 4 b 1 14 7 2 20 10 ``` 这其实是利用了pandas的groupby功能,本书稍后将对其进行详细讲解。 ## 使用DataFrame的列进行索引 人们经常想要将DataFrame的一个或多个列当做行索引来用,或者可能希望将行索引变成DataFrame的列。以下面这个DataFrame为例: ```python In [29]: frame = pd.DataFrame({'a': range(7), 'b': range(7, 0, -1), ....: 'c': ['one', 'one', 'one', 'two', 'two', ....: 'two', 'two'], ....: 'd': [0, 1, 2, 0, 1, 2, 3]}) In [30]: frame Out[30]: a b c d 0 0 7 one 0 1 1 6 one 1 2 2 5 one 2 3 3 4 two 0 4 4 3 two 1 5 5 2 two 2 6 6 1 two 3 ``` DataFrame的set_index函数会将其一个或多个列转换为行索引,并创建一个新的DataFrame: ```python In [31]: frame2 = frame.set_index(['c', 'd']) In [32]: frame2 Out[32]: a b c d one 0 0 7 1 1 6 2 2 5 two 0 3 4 1 4 3 2 5 2 3 6 1 ``` 默认情况下,那些列会从DataFrame中移除,但也可以将其保留下来: ```python In [33]: frame.set_index(['c', 'd'], drop=False) Out[33]: a b c d c d one 0 0 7 one 0 1 1 6 one 1 2 2 5 one 2 two 0 3 4 two 0 1 4 3 two 1 2 5 2 two 2 3 6 1 two 3 ``` reset_index的功能跟set_index刚好相反,层次化索引的级别会被转移到列里面: ```python In [34]: frame2.reset_index() Out[34]: c d a b 0 one 0 0 7 1 one 1 1 6 2 one 2 2 5 3 two 0 3 4 4 two 1 4 3 5 two 2 5 2 6 two 3 6 1 ``` # 8.2 合并数据集 pandas对象中的数据可以通过一些方式进行合并: - pandas.merge可根据一个或多个键将不同DataFrame中的行连接起来。SQL或其他关系型数据库的用户对此应该会比较熟悉,因为它实现的就是数据库的join操作。 - pandas.concat可以沿着一条轴将多个对象堆叠到一起。 - 实例方法combine_first可以将重复数据拼接在一起,用一个对象中的值填充另一个对象中的缺失值。 我将分别对它们进行讲解,并给出一些例子。本书剩余部分的示例中将经常用到它们。 ##数据库风格的DataFrame合并 数据集的合并(merge)或连接(join)运算是通过一个或多个键将行连接起来的。这些运算是关系型数据库(基于SQL)的核心。pandas的merge函数是对数据应用这些算法的主要切入点。 以一个简单的例子开始: ```python In [35]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], ....: 'data1': range(7)}) In [36]: df2 = pd.DataFrame({'key': ['a', 'b', 'd'], ....: 'data2': range(3)}) In [37]: df1 Out[37]: data1 key 0 0 b 1 1 b 2 2 a 3 3 c 4 4 a 5 5 a 6 6 b In [38]: df2 Out[38]: data2 key 0 0 a 1 1 b 2 2 d ``` 这是一种多对一的合并。df1中的数据有多个被标记为a和b的行,而df2中key列的每个值则仅对应一行。对这些对象调用merge即可得到: ```python In [39]: pd.merge(df1, df2) Out[39]: data1 key data2 0 0 b 1 1 1 b 1 2 6 b 1 3 2 a 0 4 4 a 0 5 5 a 0 ``` 注意,我并没有指明要用哪个列进行连接。如果没有指定,merge就会将重叠列的列名当做键。不过,最好明确指定一下: ```python In [40]: pd.merge(df1, df2, on='key') Out[40]: data1 key data2 0 0 b 1 1 1 b 1 2 6 b 1 3 2 a 0 4 4 a 0 5 5 a 0 ``` 如果两个对象的列名不同,也可以分别进行指定: ```python In [41]: df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], ....: 'data1': range(7)}) In [42]: df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'], ....: 'data2': range(3)}) In [43]: pd.merge(df3, df4, left_on='lkey', right_on='rkey') Out[43]: data1 lkey data2 rkey 0 0 b 1 b 1 1 b 1 b 2 6 b 1 b 3 2 a 0 a 4 4 a 0 a 5 5 a 0 a ``` 可能你已经注意到了,结果里面c和d以及与之相关的数据消失了。默认情况下,merge做的是“内连接”;结果中的键是交集。其他方式还有"left"、"right"以及"outer"。外连接求取的是键的并集,组合了左连接和右连接的效果: ```python In [44]: pd.merge(df1, df2, how='outer') Out[44]: data1 key data2 0 0.0 b 1.0 1 1.0 b 1.0 2 6.0 b 1.0 3 2.0 a 0.0 4 4.0 a 0.0 5 5.0 a 0.0 6 3.0 c NaN 7 NaN d 2.0 ``` 表8-1对这些选项进行了总结。 ![表8-1 不同的连接类型](https://img.kancloud.cn/8f/6a/8f6abd8242365c7b6973e328003abe56_739x333.png) 多对多的合并有些不直观。看下面的例子: ```python In [45]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'], ....: 'data1': range(6)}) In [46]: df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'], ....: 'data2': range(5)}) In [47]: df1 Out[47]: data1 key 0 0 b 1 1 b 2 2 a 3 3 c 4 4 a 5 5 b In [48]: df2 Out[48]: data2 key 0 0 a 1 1 b 2 2 a 3 3 b 4 4 d In [49]: pd.merge(df1, df2, on='key', how='left') Out[49]: data1 key data2 0 0 b 1.0 1 0 b 3.0 2 1 b 1.0 3 1 b 3.0 4 2 a 0.0 5 2 a 2.0 6 3 c NaN 7 4 a 0.0 8 4 a 2.0 9 5 b 1.0 10 5 b 3.0 ``` 多对多连接产生的是行的笛卡尔积。由于左边的DataFrame有3个"b"行,右边的有2个,所以最终结果中就有6个"b"行。连接方式只影响出现在结果中的不同的键的值: ```python In [50]: pd.merge(df1, df2, how='inner') Out[50]: data1 key data2 0 0 b 1 1 0 b 3 2 1 b 1 3 1 b 3 4 5 b 1 5 5 b 3 6 2 a 0 7 2 a 2 8 4 a 0 9 4 a 2 ``` 要根据多个键进行合并,传入一个由列名组成的列表即可: ```python In [51]: left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'], ....: 'key2': ['one', 'two', 'one'], ....: 'lval': [1, 2, 3]}) In [52]: right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'], ....: 'key2': ['one', 'one', 'one', 'two'], ....: 'rval': [4, 5, 6, 7]}) In [53]: pd.merge(left, right, on=['key1', 'key2'], how='outer') Out[53]: key1 key2 lval rval 0 foo one 1.0 4.0 1 foo one 1.0 5.0 2 foo two 2.0 NaN 3 bar one 3.0 6.0 4 bar two NaN 7.0 ``` 结果中会出现哪些键组合取决于所选的合并方式,你可以这样来理解:多个键形成一系列元组,并将其当做单个连接键(当然,实际上并不是这么回事)。 >注意:在进行列-列连接时,DataFrame对象中的索引会被丢弃。 对于合并运算需要考虑的最后一个问题是对重复列名的处理。虽然你可以手工处理列名重叠的问题(查看前面介绍的重命名轴标签),但merge有一个更实用的suffixes选项,用于指定附加到左右两个DataFrame对象的重叠列名上的字符串: ```python In [54]: pd.merge(left, right, on='key1') Out[54]: key1 key2_x lval key2_y rval 0 foo one 1 one 4 1 foo one 1 one 5 2 foo two 2 one 4 3 foo two 2 one 5 4 bar one 3 one 6 5 bar one 3 two 7 In [55]: pd.merge(left, right, on='key1', suffixes=('_left', '_right')) Out[55]: key1 key2_left lval key2_right rval 0 foo one 1 one 4 1 foo one 1 one 5 2 foo two 2 one 4 3 foo two 2 one 5 4 bar one 3 one 6 5 bar one 3 two 7 ``` merge的参数请参见表8-2。使用DataFrame的行索引合并是下一节的主题。 表8-2 merge函数的参数 ![](https://img.kancloud.cn/46/e3/46e3d0b7fc4a241584f93252f6bba2c0_1180x269.png) ![](https://img.kancloud.cn/4e/d8/4ed8180bb8ecd4aa78f5e4703312e744_1180x706.png) indicator 添加特殊的列_merge,它可以指明每个行的来源,它的值有left_only、right_only或both,根据每行的合并数据的来源。 ## 索引上的合并 有时候,DataFrame中的连接键位于其索引中。在这种情况下,你可以传入left_index=True或right_index=True(或两个都传)以说明索引应该被用作连接键: ```python In [56]: left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'], ....: 'value': range(6)}) In [57]: right1 = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b']) In [58]: left1 Out[58]: key value 0 a 0 1 b 1 2 a 2 3 a 3 4 b 4 5 c 5 In [59]: right1 Out[59]: group_val a 3.5 b 7.0 In [60]: pd.merge(left1, right1, left_on='key', right_index=True) Out[60]: key value group_val 0 a 0 3.5 2 a 2 3.5 3 a 3 3.5 1 b 1 7.0 4 b 4 7.0 ``` 由于默认的merge方法是求取连接键的交集,因此你可以通过外连接的方式得到它们的并集: ```python In [61]: pd.merge(left1, right1, left_on='key', right_index=True, how='outer') Out[61]: key value group_val 0 a 0 3.5 2 a 2 3.5 3 a 3 3.5 1 b 1 7.0 4 b 4 7.0 5 c 5 NaN ``` 对于层次化索引的数据,事情就有点复杂了,因为索引的合并默认是多键合并: ```python In [62]: lefth = pd.DataFrame({'key1': ['Ohio', 'Ohio', 'Ohio', ....: 'Nevada', 'Nevada'], ....: 'key2': [2000, 2001, 2002, 2001, 2002], ....: 'data': np.arange(5.)}) In [63]: righth = pd.DataFrame(np.arange(12).reshape((6, 2)), ....: index=[['Nevada', 'Nevada', 'Ohio', 'Ohio', ....: 'Ohio', 'Ohio'], ....: [2001, 2000, 2000, 2000, 2001, 2002]], ....: columns=['event1', 'event2']) In [64]: lefth Out[64]: data key1 key2 0 0.0 Ohio 2000 1 1.0 Ohio 2001 2 2.0 Ohio 2002 3 3.0 Nevada 2001 4 4.0 Nevada 2002 In [65]: righth Out[65]: event1 event2 Nevada 2001 0 1 2000 2 3 Ohio 2000 4 5 2000 6 7 2001 8 9 2002 10 11 ``` 这种情况下,你必须以列表的形式指明用作合并键的多个列(注意用how='outer'对重复索引值的处理): ```python In [66]: pd.merge(lefth, righth, left_on=['key1', 'key2'], right_index=True) Out[66]: data key1 key2 event1 event2 0 0.0 Ohio 2000 4 5 0 0.0 Ohio 2000 6 7 1 1.0 Ohio 2001 8 9 2 2.0 Ohio 2002 10 11 3 3.0 Nevada 2001 0 1 In [67]: pd.merge(lefth, righth, left_on=['key1', 'key2'], ....: right_index=True, how='outer') Out[67]: data key1 key2 event1 event2 0 0.0 Ohio 2000 4.0 5.0 0 0.0 Ohio 2000 6.0 7.0 1 1.0 Ohio 2001 8.0 9.0 2 2.0 Ohio 2002 10.0 11.0 3 3.0 Nevada 2001 0.0 1.0 4 4.0 Nevada 2002 NaN NaN 4 NaN Nevada 2000 2.0 3.0 ``` 同时使用合并双方的索引也没问题: ```python In [68]: left2 = pd.DataFrame([[1., 2.], [3., 4.], [5., 6.]], ....: index=['a', 'c', 'e'], ....: columns=['Ohio', 'Nevada']) In [69]: right2 = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [13, 14]], ....: index=['b', 'c', 'd', 'e'], ....: columns=['Missouri', 'Alabama']) In [70]: left2 Out[70]: Ohio Nevada a 1.0 2.0 c 3.0 4.0 e 5.0 6.0 In [71]: right2 Out[71]: Missouri Alabama b 7.0 8.0 c 9.0 10.0 d 11.0 12.0 e 13.0 14.0 In [72]: pd.merge(left2, right2, how='outer', left_index=True, right_index=True) Out[72]: Ohio Nevada Missouri Alabama a 1.0 2.0 NaN NaN b NaN NaN 7.0 8.0 c 3.0 4.0 9.0 10.0 d NaN NaN 11.0 12.0 e 5.0 6.0 13.0 14.0 ``` DataFrame还有一个便捷的join实例方法,它能更为方便地实现按索引合并。它还可用于合并多个带有相同或相似索引的DataFrame对象,但要求没有重叠的列。在上面那个例子中,我们可以编写: ```python In [73]: left2.join(right2, how='outer') Out[73]: Ohio Nevada Missouri Alabama a 1.0 2.0 NaN NaN b NaN NaN 7.0 8.0 c 3.0 4.0 9.0 10.0 d NaN NaN 11.0 12.0 e 5.0 6.0 13.0 14.0 ``` 因为一些历史版本的遗留原因,DataFrame的join方法默认使用的是左连接,保留左边表的行索引。它还支持在调用的DataFrame的列上,连接传递的DataFrame索引: ```python In [74]: left1.join(right1, on='key') Out[74]: key value group_val 0 a 0 3.5 1 b 1 7.0 2 a 2 3.5 3 a 3 3.5 4 b 4 7.0 5 c 5 NaN ``` 最后,对于简单的索引合并,你还可以向join传入一组DataFrame,下一节会介绍更为通用的concat函数,也能实现此功能: ```python In [75]: another = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [16., 17.]], ....: index=['a', 'c', 'e', 'f'], ....: columns=['New York', 'Oregon']) In [76]: another Out[76]: New York Oregon a 7.0 8.0 c 9.0 10.0 e 11.0 12.0 f 16.0 17.0 In [77]: left2.join([right2, another]) Out[77]: Ohio Nevada Missouri Alabama New York Oregon a 1.0 2.0 NaN NaN 7.0 8.0 c 3.0 4.0 9.0 10.0 9.0 10.0 e 5.0 6.0 13.0 14.0 11.0 12.0 In [78]: left2.join([right2, another], how='outer') Out[78]: Ohio Nevada Missouri Alabama New York Oregon a 1.0 2.0 NaN NaN 7.0 8.0 b NaN NaN 7.0 8.0 NaN NaN c 3.0 4.0 9.0 10.0 9.0 10.0 d NaN NaN 11.0 12.0 NaN NaN e 5.0 6.0 13.0 14.0 11.0 12.0 f NaN NaN NaN NaN 16.0 17.0 ``` ## 轴向连接 另一种数据合并运算也被称作连接(concatenation)、绑定(binding)或堆叠(stacking)。NumPy的concatenation函数可以用NumPy数组来做: ```python In [79]: arr = np.arange(12).reshape((3, 4)) In [80]: arr Out[80]: array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) In [81]: np.concatenate([arr, arr], axis=1) Out[81]: array([[ 0, 1, 2, 3, 0, 1, 2, 3], [ 4, 5, 6, 7, 4, 5, 6, 7], [ 8, 9, 10, 11, 8, 9, 10, 11]]) ``` 对于pandas对象(如Series和DataFrame),带有标签的轴使你能够进一步推广数组的连接运算。具体点说,你还需要考虑以下这些东西: - 如果对象在其它轴上的索引不同,我们应该合并这些轴的不同元素还是只使用交集? - 连接的数据集是否需要在结果对象中可识别? - 连接轴中保存的数据是否需要保留?许多情况下,DataFrame默认的整数标签最好在连接时删掉。 pandas的concat函数提供了一种能够解决这些问题的可靠方式。我将给出一些例子来讲解其使用方式。假设有三个没有重叠索引的Series: ```python In [82]: s1 = pd.Series([0, 1], index=['a', 'b']) In [83]: s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e']) In [84]: s3 = pd.Series([5, 6], index=['f', 'g']) ``` 对这些对象调用concat可以将值和索引粘合在一起: ```python In [85]: pd.concat([s1, s2, s3]) Out[85]: a 0 b 1 c 2 d 3 e 4 f 5 g 6 dtype: int64 ``` 默认情况下,concat是在axis=0上工作的,最终产生一个新的Series。如果传入axis=1,则结果就会变成一个DataFrame(axis=1是列): ```python In [86]: pd.concat([s1, s2, s3], axis=1) Out[86]: 0 1 2 a 0.0 NaN NaN b 1.0 NaN NaN c NaN 2.0 NaN d NaN 3.0 NaN e NaN 4.0 NaN f NaN NaN 5.0 g NaN NaN 6.0 ``` 这种情况下,另外的轴上没有重叠,从索引的有序并集(外连接)上就可以看出来。传入join='inner'即可得到它们的交集: ```python In [87]: s4 = pd.concat([s1, s3]) In [88]: s4 Out[88]: a 0 b 1 f 5 g 6 dtype: int64 In [89]: pd.concat([s1, s4], axis=1) Out[89]: 0 1 a 0.0 0 b 1.0 1 f NaN 5 g NaN 6 In [90]: pd.concat([s1, s4], axis=1, join='inner') Out[90]: 0 1 a 0 0 b 1 1 ``` 在这个例子中,f和g标签消失了,是因为使用的是join='inner'选项。 你可以通过join_axes指定要在其它轴上使用的索引: ```python In [91]: pd.concat([s1, s4], axis=1, join_axes=[['a', 'c', 'b', 'e']]) Out[91]: 0 1 a 0.0 0.0 c NaN NaN b 1.0 1.0 e NaN NaN ``` 不过有个问题,参与连接的片段在结果中区分不开。假设你想要在连接轴上创建一个层次化索引。使用keys参数即可达到这个目的: ```python In [92]: result = pd.concat([s1, s1, s3], keys=['one','two', 'three']) In [93]: result Out[93]: one a 0 b 1 two a 0 b 1 three f 5 g 6 dtype: int64 In [94]: result.unstack() Out[94]: a b f g one 0.0 1.0 NaN NaN two 0.0 1.0 NaN NaN three NaN NaN 5.0 6.0 ``` 如果沿着axis=1对Series进行合并,则keys就会成为DataFrame的列头: ```python In [95]: pd.concat([s1, s2, s3], axis=1, keys=['one','two', 'three']) Out[95]: one two three a 0.0 NaN NaN b 1.0 NaN NaN c NaN 2.0 NaN d NaN 3.0 NaN e NaN 4.0 NaN f NaN NaN 5.0 g NaN NaN 6.0 ``` 同样的逻辑也适用于DataFrame对象: ```python In [96]: df1 = pd.DataFrame(np.arange(6).reshape(3, 2), index=['a', 'b', 'c'], ....: columns=['one', 'two']) In [97]: df2 = pd.DataFrame(5 + np.arange(4).reshape(2, 2), index=['a', 'c'], ....: columns=['three', 'four']) In [98]: df1 Out[98]: one two a 0 1 b 2 3 c 4 5 In [99]: df2 Out[99]: three four a 5 6 c 7 8 In [100]: pd.concat([df1, df2], axis=1, keys=['level1', 'level2']) Out[100]: level1 level2 one two three four a 0 1 5.0 6.0 b 2 3 NaN NaN c 4 5 7.0 8.0 ``` 如果传入的不是列表而是一个字典,则字典的键就会被当做keys选项的值: ```python In [101]: pd.concat({'level1': df1, 'level2': df2}, axis=1) Out[101]: level1 level2 one two three four a 0 1 5.0 6.0 b 2 3 NaN NaN c 4 5 7.0 8.0 ``` 此外还有两个用于管理层次化索引创建方式的参数(参见表8-3)。举个例子,我们可以用names参数命名创建的轴级别: ```python In [102]: pd.concat([df1, df2], axis=1, keys=['level1', 'level2'], .....: names=['upper', 'lower']) Out[102]: upper level1 level2 lower one two three four a 0 1 5.0 6.0 b 2 3 NaN NaN c 4 5 7.0 8.0 ``` 最后一个关于DataFrame的问题是,DataFrame的行索引不包含任何相关数据: ```python In [103]: df1 = pd.DataFrame(np.random.randn(3, 4), columns=['a', 'b', 'c', 'd']) In [104]: df2 = pd.DataFrame(np.random.randn(2, 3), columns=['b', 'd', 'a']) In [105]: df1 Out[105]: a b c d 0 1.246435 1.007189 -1.296221 0.274992 1 0.228913 1.352917 0.886429 -2.001637 2 -0.371843 1.669025 -0.438570 -0.539741 In [106]: df2 Out[106]: b d a 0 0.476985 3.248944 -1.021228 1 -0.577087 0.124121 0.302614 ``` 在这种情况下,传入ignore_index=True即可: ```python In [107]: pd.concat([df1, df2], ignore_index=True) Out[107]: a b c d 0 1.246435 1.007189 -1.296221 0.274992 1 0.228913 1.352917 0.886429 -2.001637 2 -0.371843 1.669025 -0.438570 -0.539741 3 -1.021228 0.476985 NaN 3.248944 4 0.302614 -0.577087 NaN 0.124121 ``` ![表8-3 concat函数的参数](https://img.kancloud.cn/64/e2/64e2260367eb2494a348a22267c16645_1167x706.png) ## 合并重叠数据 还有一种数据组合问题不能用简单的合并(merge)或连接(concatenation)运算来处理。比如说,你可能有索引全部或部分重叠的两个数据集。举个有启发性的例子,我们使用NumPy的where函数,它表示一种等价于面向数组的if-else: ```python In [108]: a = pd.Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan], .....: index=['f', 'e', 'd', 'c', 'b', 'a']) In [109]: b = pd.Series(np.arange(len(a), dtype=np.float64), .....: index=['f', 'e', 'd', 'c', 'b', 'a']) In [110]: b[-1] = np.nan In [111]: a Out[111]: f NaN e 2.5 d NaN c 3.5 b 4.5 a NaN dtype: float64 In [112]: b Out[112]: f 0.0 e 1.0 d 2.0 c 3.0 b 4.0 a NaN dtype: float64 In [113]: np.where(pd.isnull(a), b, a) Out[113]: array([ 0. , 2.5, 2. , 3.5, 4.5, nan]) ``` Series有一个combine_first方法,实现的也是一样的功能,还带有pandas的数据对齐: ```python In [114]: b[:-2].combine_first(a[2:]) Out[114]: a NaN b 4.5 c 3.0 d 2.0 e 1.0 f 0.0 dtype: float64 ``` 对于DataFrame,combine_first自然也会在列上做同样的事情,因此你可以将其看做:用传递对象中的数据为调用对象的缺失数据“打补丁”: ```python In [115]: df1 = pd.DataFrame({'a': [1., np.nan, 5., np.nan], .....: 'b': [np.nan, 2., np.nan, 6.], .....: 'c': range(2, 18, 4)}) In [116]: df2 = pd.DataFrame({'a': [5., 4., np.nan, 3., 7.], .....: 'b': [np.nan, 3., 4., 6., 8.]}) In [117]: df1 Out[117]: a b c 0 1.0 NaN 2 1 NaN 2.0 6 2 5.0 NaN 10 3 NaN 6.0 14 In [118]: df2 Out[118]: a b 0 5.0 NaN 1 4.0 3.0 2 NaN 4.0 3 3.0 6.0 4 7.0 8.0 In [119]: df1.combine_first(df2) Out[119]: a b c 0 1.0 NaN 2.0 1 4.0 2.0 6.0 2 5.0 4.0 10.0 3 3.0 6.0 14.0 4 7.0 8.0 NaN ``` # 8.3 重塑和轴向旋转 有许多用于重新排列表格型数据的基础运算。这些函数也称作重塑(reshape)或轴向旋转(pivot)运算。 ## 重塑层次化索引 层次化索引为DataFrame数据的重排任务提供了一种具有良好一致性的方式。主要功能有二: - stack:将数据的列“旋转”为行。 - unstack:将数据的行“旋转”为列。 我将通过一系列的范例来讲解这些操作。接下来看一个简单的DataFrame,其中的行列索引均为字符串数组: ```python In [120]: data = pd.DataFrame(np.arange(6).reshape((2, 3)), .....: index=pd.Index(['Ohio','Colorado'], name='state'), .....: columns=pd.Index(['one', 'two', 'three'], .....: name='number')) In [121]: data Out[121]: number one two three state Ohio 0 1 2 Colorado 3 4 5 ``` 对该数据使用stack方法即可将列转换为行,得到一个Series: ```python In [122]: result = data.stack() In [123]: result Out[123]: state number Ohio one 0 two 1 three 2 Colorado one 3 two 4 three 5 dtype: int64 ``` 对于一个层次化索引的Series,你可以用unstack将其重排为一个DataFrame: ```python In [124]: result.unstack() Out[124]: number one two three state Ohio 0 1 2 Colorado 3 4 5 ``` 默认情况下,unstack操作的是最内层(stack也是如此)。传入分层级别的编号或名称即可对其它级别进行unstack操作: ```python In [125]: result.unstack(0) Out[125]: state Ohio Colorado number one 0 3 two 1 4 three 2 5 In [126]: result.unstack('state') Out[126]: state Ohio Colorado number one 0 3 two 1 4 three 2 5 ``` 如果不是所有的级别值都能在各分组中找到的话,则unstack操作可能会引入缺失数据: ```python In [127]: s1 = pd.Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd']) In [128]: s2 = pd.Series([4, 5, 6], index=['c', 'd', 'e']) In [129]: data2 = pd.concat([s1, s2], keys=['one', 'two']) In [130]: data2 Out[130]: one a 0 b 1 c 2 d 3 two c 4 d 5 e 6 dtype: int64 In [131]: data2.unstack() Out[131]: a b c d e one 0.0 1.0 2.0 3.0 NaN two NaN NaN 4.0 5.0 6.0 ``` stack默认会滤除缺失数据,因此该运算是可逆的: ```python In [132]: data2.unstack() Out[132]: a b c d e one 0.0 1.0 2.0 3.0 NaN two NaN NaN 4.0 5.0 6.0 In [133]: data2.unstack().stack() Out[133]: one a 0.0 b 1.0 c 2.0 d 3.0 two c 4.0 d 5.0 e 6.0 dtype: float64 In [134]: data2.unstack().stack(dropna=False) Out[134]: one a 0.0 b 1.0 c 2.0 d 3.0 e NaN two a NaN b NaN c 4.0 d 5.0 e 6.0 dtype: float64 ``` 在对DataFrame进行unstack操作时,作为旋转轴的级别将会成为结果中的最低级别: ```python In [135]: df = pd.DataFrame({'left': result, 'right': result + 5}, .....: columns=pd.Index(['left', 'right'], name='side')) In [136]: df Out[136]: side left right state number Ohio one 0 5 two 1 6 three 2 7 Colorado one 3 8 two 4 9 three 5 10 In [137]: df.unstack('state') Out[137]: side left right state Ohio Colorado Ohio Colorado number one 0 3 5 8 two 1 4 6 9 three 2 5 7 10 ``` 当调用stack,我们可以指明轴的名字: ```python In [138]: df.unstack('state').stack('side') Out[138]: state Colorado Ohio number side one left 3 0 right 8 5 two left 4 1 right 9 6 three left 5 2 right 10 7 ``` ## 将“长格式”旋转为“宽格式” 多个时间序列数据通常是以所谓的“长格式”(long)或“堆叠格式”(stacked)存储在数据库和CSV中的。我们先加载一些示例数据,做一些时间序列规整和数据清洗: ```python In [139]: data = pd.read_csv('examples/macrodata.csv') In [140]: data.head() Out[140]: year quarter realgdp realcons realinv realgovt realdpi cpi \ 0 1959.0 1.0 2710.349 1707.4 286.898 470.045 1886.9 28.98 1 1959.0 2.0 2778.801 1733.7 310.859 481.301 1919.7 29.15 2 1959.0 3.0 2775.488 1751.8 289.226 491.260 1916.4 29.35 3 1959.0 4.0 2785.204 1753.7 299.356 484.052 1931.3 29.37 4 1960.0 1.0 2847.699 1770.5 331.722 462.199 1955.5 29.54 m1 tbilrate unemp pop infl realint 0 139.7 2.82 5.8 177.146 0.00 0.00 1 141.7 3.08 5.1 177.830 2.34 0.74 2 140.5 3.82 5.3 178.657 2.74 1.09 3 140.0 4.33 5.6 179.386 0.27 4.06 4 139.6 3.50 5.2 180.007 2.31 1.19 In [141]: periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, .....: name='date') In [142]: columns = pd.Index(['realgdp', 'infl', 'unemp'], name='item') In [143]: data = data.reindex(columns=columns) In [144]: data.index = periods.to_timestamp('D', 'end') In [145]: ldata = data.stack().reset_index().rename(columns={0: 'value'}) ``` 这就是多个时间序列(或者其它带有两个或多个键的可观察数据,这里,我们的键是date和item)的长格式。表中的每行代表一次观察。 关系型数据库(如MySQL)中的数据经常都是这样存储的,因为固定架构(即列名和数据类型)有一个好处:随着表中数据的添加,item列中的值的种类能够增加。在前面的例子中,date和item通常就是主键(用关系型数据库的说法),不仅提供了关系完整性,而且提供了更为简单的查询支持。有的情况下,使用这样的数据会很麻烦,你可能会更喜欢DataFrame,不同的item值分别形成一列,date列中的时间戳则用作索引。DataFrame的pivot方法完全可以实现这个转换: ```python In [147]: pivoted = ldata.pivot('date', 'item', 'value') In [148]: pivoted Out[148]: item infl realgdp unemp date 1959-03-31 0.00 2710.349 5.8 1959-06-30 2.34 2778.801 5.1 1959-09-30 2.74 2775.488 5.3 1959-12-31 0.27 2785.204 5.6 1960-03-31 2.31 2847.699 5.2 1960-06-30 0.14 2834.390 5.2 1960-09-30 2.70 2839.022 5.6 1960-12-31 1.21 2802.616 6.3 1961-03-31 -0.40 2819.264 6.8 1961-06-30 1.47 2872.005 7.0 ... ... ... ... 2007-06-30 2.75 13203.977 4.5 2007-09-30 3.45 13321.109 4.7 2007-12-31 6.38 13391.249 4.8 2008-03-31 2.82 13366.865 4.9 2008-06-30 8.53 13415.266 5.4 2008-09-30 -3.16 13324.600 6.0 2008-12-31 -8.79 13141.920 6.9 2009-03-31 0.94 12925.410 8.1 2009-06-30 3.37 12901.504 9.2 2009-09-30 3.56 12990.341 9.6 [203 rows x 3 columns] ``` 前两个传递的值分别用作行和列索引,最后一个可选值则是用于填充DataFrame的数据列。假设有两个需要同时重塑的数据列: ```python In [149]: ldata['value2'] = np.random.randn(len(ldata)) In [150]: ldata[:10] Out[150]: date item value value2 0 1959-03-31 realgdp 2710.349 0.523772 1 1959-03-31 infl 0.000 0.000940 2 1959-03-31 unemp 5.800 1.343810 3 1959-06-30 realgdp 2778.801 -0.713544 4 1959-06-30 infl 2.340 -0.831154 5 1959-06-30 unemp 5.100 -2.370232 6 1959-09-30 realgdp 2775.488 -1.860761 7 1959-09-30 infl 2.740 -0.860757 8 1959-09-30 unemp 5.300 0.560145 9 1959-12-31 realgdp 2785.204 -1.265934 ``` 如果忽略最后一个参数,得到的DataFrame就会带有层次化的列: ```python In [151]: pivoted = ldata.pivot('date', 'item') In [152]: pivoted[:5] Out[152]: value value2 item infl realgdp unemp infl realgdp unemp date 1959-03-31 0.00 2710.349 5.8 0.000940 0.523772 1.343810 1959-06-30 2.34 2778.801 5.1 -0.831154 -0.713544 -2.370232 1959-09-30 2.74 2775.488 5.3 -0.860757 -1.860761 0.560145 1959-12-31 0.27 2785.204 5.6 0.119827 -1.265934 -1.063512 1960-03-31 2.31 2847.699 5.2 -2.359419 0.332883 -0.199543 In [153]: pivoted['value'][:5] Out[153]: item infl realgdp unemp date 1959-03-31 0.00 2710.349 5.8 1959-06-30 2.34 2778.801 5.1 1959-09-30 2.74 2775.488 5.3 1959-12-31 0.27 2785.204 5.6 1960-03-31 2.31 2847.699 5.2 ``` 注意,pivot其实就是用set_index创建层次化索引,再用unstack重塑: ```python In [154]: unstacked = ldata.set_index(['date', 'item']).unstack('item') In [155]: unstacked[:7] Out[155]: value value2 item infl realgdp unemp infl realgdp unemp date 1959-03-31 0.00 2710.349 5.8 0.000940 0.523772 1.343810 1959-06-30 2.34 2778.801 5.1 -0.831154 -0.713544 -2.370232 1959-09-30 2.74 2775.488 5.3 -0.860757 -1.860761 0.560145 1959-12-31 0.27 2785.204 5.6 0.119827 -1.265934 -1.063512 1960-03-31 2.31 2847.699 5.2 -2.359419 0.332883 -0.199543 1960-06-30 0.14 2834.390 5.2 -0.970736 -1.541996 -1.307030 1960-09-30 2.70 2839.022 5.6 0.377984 0.286350 -0.753887 ``` ## 将“宽格式”旋转为“长格式” 旋转DataFrame的逆运算是pandas.melt。它不是将一列转换到多个新的DataFrame,而是合并多个列成为一个,产生一个比输入长的DataFrame。看一个例子: ```python In [157]: df = pd.DataFrame({'key': ['foo', 'bar', 'baz'], .....: 'A': [1, 2, 3], .....: 'B': [4, 5, 6], .....: 'C': [7, 8, 9]}) In [158]: df Out[158]: A B C key 0 1 4 7 foo 1 2 5 8 bar 2 3 6 9 baz ``` key列可能是分组指标,其它的列是数据值。当使用pandas.melt,我们必须指明哪些列是分组指标。下面使用key作为唯一的分组指标: ```python In [159]: melted = pd.melt(df, ['key']) In [160]: melted Out[160]: key variable value 0 foo A 1 1 bar A 2 2 baz A 3 3 foo B 4 4 bar B 5 5 baz B 6 6 foo C 7 7 bar C 8 8 baz C 9 ``` 使用pivot,可以重塑回原来的样子: ```python In [161]: reshaped = melted.pivot('key', 'variable', 'value') In [162]: reshaped Out[162]: variable A B C key bar 2 5 8 baz 3 6 9 foo 1 4 7 ``` 因为pivot的结果从列创建了一个索引,用作行标签,我们可以使用reset_index将数据移回列: ```python In [163]: reshaped.reset_index() Out[163]: variable key A B C 0 bar 2 5 8 1 baz 3 6 9 2 foo 1 4 7 ``` 你还可以指定列的子集,作为值的列: ```python In [164]: pd.melt(df, id_vars=['key'], value_vars=['A', 'B']) Out[164]: key variable value 0 foo A 1 1 bar A 2 2 baz A 3 3 foo B 4 4 bar B 5 5 baz B 6 ``` pandas.melt也可以不用分组指标: ```python In [165]: pd.melt(df, value_vars=['A', 'B', 'C']) Out[165]: variable value 0 A 1 1 A 2 2 A 3 3 B 4 4 B 5 5 B 6 6 C 7 7 C 8 8 C 9 In [166]: pd.melt(df, value_vars=['key', 'A', 'B']) Out[166]: variable value 0 key foo 1 key bar 2 key baz 3 A 1 4 A 2 5 A 3 6 B 4 7 B 5 8 B 6 ``` #8.4 总结 现在你已经掌握了pandas数据导入、清洗、重塑,我们可以进一步学习matplotlib数据可视化。我们在稍后会回到pandas,学习更高级的分析。