日志系统一般包括打日志,采集,中转,收集,存储,分析,呈现,搜索还有分发等。一些特殊的如染色,全链条跟踪或者监控都可能需要依赖于日志系统实现。日志系统的建设不仅仅是工具的建设,还有规范和组件的建设,最好一些基本的日志在框架和组件层面加就行了,比如全链接跟踪之类的。
对于常规日志系统ELK能满足大部分的需求,ELK 包括如下组件:
* ElasticSearch 是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。
* Logstash 是一个完全开源的工具,它可以对你的日志进行收集、分析,并将其存储供以后使用。
* Kibana 是一个开源和免费的工具,它可以为 Logstash 和 ElasticSearch 提供的日志分析友好的 Web 界面,可以帮助汇总、分析和搜索重要数据日志。
Filebeat 已经完全替代了 Logstash-Forwarder 成为新一代的日志采集器,同时鉴于它轻量、安全等特点,越来越多人开始使用它。
因为免费的 ELK 没有任何安全机制,所以这里使用了 Nginx 作反向代理,避免用户直接访问 Kibana 服务器。加上配置 Nginx 实现简单的用户认证,一定程度上提高安全性。另外,Nginx 本身具有负载均衡的作用,能够提高系统访问性能。ELK 架构如图4所示:
![](https://box.kancloud.cn/0edd1ffbc920545e3de23b5524588e64_550x211.png)
\[图4\] ELK 流程图
对于有实时计算的需求,可以使用 Flume+Kafka+Storm+MySQL方案,一 般架构如图5所示:
![](https://box.kancloud.cn/16a59268fc237dad13c9dd9e2288b404_664x345.png)
\[图5\] 实时分析系统架构图
其中:
* Flume 是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume 提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
* Kafka 是由 Apache 软件基金会开发的一个开源流处理平台,由 Scala 和 Java 编写。其本质上是一个“按照分布式事务日志架构的大规模发布/订阅消息队列”,它以可水平扩展和高吞吐率而被广泛使用。
Kafka 追求的是高吞吐量、高负载,Flume 追求的是数据的多样性,二者结合起来简直完美。