[mysql建索引的几大原则](http://blog.csdn.net/u013412790/article/details/51612304)
1.选择唯一性索引
唯一性索引的值是唯一的,可以更快速的通过该索引来确定某条记录。例如,学生表中学号是具有唯一性的字段。为该字段建立唯一性索引可以很快的确定某个学生的信息。如果使用姓名的话,可能存在同名现象,从而降低查询速度。
2.为经常需要排序、分组和联合操作的字段建立索引
经常需要ORDER BY、GROUP BY、DISTINCT和UNION等操作的字段,排序操作会浪费很多时间。如果为其建立索引,可以有效地避免排序操作。
3.为常作为查询条件的字段建立索引
如果某个字段经常用来做查询条件,那么该字段的查询速度会影响整个表的查询速度。因此,为这样的字段建立索引,可以提高整个表的查询速度。
4.限制索引的数目
索引的数目不是越多越好。每个索引都需要占用磁盘空间,索引越多,需要的磁盘空间就越大。修改表时,对索引的重构和更新很麻烦。越多的索引,会使更新表变得很浪费时间。
5.尽量使用数据量少的索引
如果索引的值很长,那么查询的速度会受到影响。例如,对一个CHAR(100)类型的字段进行全文检索需要的时间肯定要比对CHAR(10)类型的字段需要的时间要多。
6.尽量使用前缀来索引
如果索引字段的值很长,最好使用值的前缀来索引。例如,TEXT和BLOG类型的字段,进行全文检索会很浪费时间。如果只检索字段的前面的若干个字符,这样可以提高检索速度。
7.删除不再使用或者很少使用的索引
表中的数据被大量更新,或者数据的使用方式被改变后,原有的一些索引可能不再需要。[数据库](http://lib.csdn.net/base/mysql "MySQL知识库")管理员应当定期找出这些索引,将它们删除,从而减少索引对更新操作的影响。
8 . 最左前缀匹配原则,非常重要的原则。
[MySQL](http://lib.csdn.net/base/mysql "MySQL知识库")会一直向右匹配直到遇到范围查询(>、 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
9 .=和in可以乱序。
比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式
10 . 尽量选择区分度高的列作为索引。
区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在[大数据](http://lib.csdn.net/base/hadoop "Hadoop知识库")面前区分度就 是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条 记录
11 .索引列不能参与计算,保持列“干净”。
比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本 太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’);
12 .尽量的扩展索引,不要新建索引。
比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可
注意:选择索引的最终目的是为了使查询的速度变快。上面给出的原则是最基本的准则,但不能拘泥于上面的准则。读者要在以后的学习和工作中进行不断的实践。根据应用的实际情况进行分析和判断,选择最合适的索引方式。
参考:[http://book.51cto.com/art/201012/240955.htm](http://book.51cto.com/art/201012/240955.htm)
- 数据库
- CAP定理
- 关系模型
- 关系数据库
- NoSQL
- ODBC
- JDBC
- ODBC、JDBC和四种驱动类型
- mysql
- 安装与配置
- CentOS 7 安装 MySQL
- 优化
- 比较全面的MySQL优化参考
- 1、硬件层相关优化
- 1.1、CPU相关
- 1.2、磁盘I/O相关
- 2、系统层相关优化
- 2.1、文件系统层优化
- 2.2、其他内核参数优化
- 3、MySQL层相关优化
- 3.1、关于版本选择
- 3.2、关于最重要的参数选项调整建议
- 3.3、关于Schema设计规范及SQL使用建议
- 3.4、其他建议
- 后记
- Mysql设计与优化专题
- ER图,数据建模与数据字典
- 数据中设计中的范式与反范式
- 字段类型与合理的选择字段类型
- 表的垂直拆分和水平拆分
- 详解慢查询
- mysql的最佳索引攻略
- 高手详解SQL性能优化十条经验
- 优化SQL查询:如何写出高性能SQL语句
- MySQL索引原理及慢查询优化
- 数据库SQL优化大总结之 百万级数据库优化方案
- 数据库性能优化之SQL语句优化1
- 【重磅干货】看了此文,Oracle SQL优化文章不必再看!
- MySQL 对于千万级的大表要怎么优化?
- MySQL 数据库设计总结
- MYSQL性能优化的最佳20+条经验
- 数据操作
- 数据语句操作类型
- DCL
- 修改Mysql数据库名的5种方法
- DML
- 连接
- 连接2
- DDL
- 数据类型
- 字符集
- 表引擎
- 索引
- MySQL理解索引、添加索引的原则
- mysql建索引的几大原则
- 浅谈mysql的索引设计原则以及常见索引的区别
- 常用工具简介
- QA
- MySQL主机127.0.0.1与localhost区别总结
- 视图(view)
- 触发器
- 自定义函数和存储过程的使用
- 事务(transaction)
- 范式与反范式
- 常用函数
- MySQL 数据类型 详解
- Mysql数据库常用分库和分表方式
- 隔离级别
- 五分钟搞清楚MySQL事务隔离级别
- mysql隔离级别及事务传播
- 事务隔离级别和脏读的快速入门
- 数据库引擎中的隔离级别
- 事务隔离级别
- Innodb中的事务隔离级别和锁的关系
- MySQL 四种事务隔离级的说明
- Innodb锁机制:Next-Key Lock 浅谈
- SQL函数和存储过程的区别
- mongo
- MongoDB设置访问权限、设置用户
- redis
- ORM
- mybatis
- $ vs #
- mybatis深入理解(一)之 # 与 $ 区别以及 sql 预编译
- 电商设计
- B2C电子商务系统研发——概述篇
- B2C电子商务系统研发——商品数据模型设计
- B2C电子商务系统研发——商品模块E-R图建模
- B2C电子商务系统研发——商品SKU分析和设计(一)
- B2C电子商务系统研发——商品SKU分析和设计(二)
- 数据库命名规范--通用