企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
![](https://img.kancloud.cn/41/e0/41e066af9a6c25a24868d9667253ec98_1241x333.jpg) ***** 你是不是觉得数据结构和算法,跟操作系统、计算机网络一样,是脱离实际工作的知识?可能除了面试,这辈子也用不着? <br>尽管计算机相关专业的同学在大学都学过这门课程,但是据我了解,很多程序员对数据结构和算法依旧一窍不通。还有一些人也只听说过数组、链表、快排这些最最基本的数据结构和算法,稍微复杂一点的就完全没概念。 <br>当然,也有很多同学说,自己实际工作中根本用不到数据结构和算法。所以,就算不懂这块知识,只要代码、开发框架用得熟练,照样可以把代码写得'飞'起来。事实真的是这样吗? <br>今天我们就来详细聊一聊,为什么要学习数据结构和算法。 <br>想要通关大厂面试,千万别让数据结构和算法拖了后腿 很多大公司,比如BAT、Google、Facebook,面试的时候都喜欢考算法、让人现场写代码。有些人虽然技术不错,但每次去面试都会'跪'在算法上,很是可惜。那你有没有想过,为什么这些大公司都喜欢考算法呢? <br>校招的时候,参加面试的学生通常没有实际项目经验,公司只能考察他们的基础知识是否牢固。社招就更不用说了,越是厉害的公司,越是注重考察数据结构与算法这类基础知识。相比短期能力, 他们更看中你的长期潜力。 <br>你可能要说了,我不懂数据结构与算法,照样找到了好工作啊。那我是不是就不用学数据结构和算法呢?当然不是,你别忘了,我们学任何知识都是为了“用”的,是为了解决实际工作问题的,学习数据结构和算法自然也不例外。 <br>业务开发工程师,你真的愿意做一辈子 CRUD boy 吗? 如果你是一名业务开发工程师,你可能要说,我整天就是做数据库 CRUD(增删改查),哪里用得到数据结构和算法啊? <br>是的,对于大部分业务开发来说,我们平时可能更多的是利用已经封装好的现成的接口、类库来堆砌、翻译业务逻辑,很少需要自己实现数据结构和算法。但是,不需要自己实现,并不代表什么都不需要了解。 <br>如果不知道这些类库背后的原理,不懂得时间、空间复杂度分析,你如何能用好、用对它们?存储某个业务数据的时候,你如何知道应该用 ArrayList,还是 Linked List 呢?调用了某个函数之后,你又该如何评估代码的性能和资源的消耗呢? <br>作为业务开发,我们会用到各种框架、中间件和底层系统,比如 Spring、RPC 框架、消息中间件、Redis 等等。在这些基础框架中,一般都揉和了很多基础数据结构和算法的设计思想。 <br>比如,我们常用的 Key-Value 数据库 Redis 中,里面的有序集合是用什么数据结构来实现的呢?为什么要用跳表来实现呢?为什么不用二叉树呢? <br>如果你能弄明白这些底层原理,你就能更好地使用它们。即便出现问题,也很容易就能定位。因此,掌握数据结构和算法,不管对于阅读框架源码,还是理解其背后的设计思想,都是非常有用的。 <br>在平时的工作中,数据结构和算法的应用到处可见。我来举一个你非常熟悉的例子:如何实时地统计业务接口的 99% 响应时间? 你可能最先想到,每次查询时,从小到大排序所有的响应时间,如果总共有 1200 个数据,那第1188 个数据就是 99% 的响应时间。很显然,每次用这个方法查询的话都要排序,效率是非常低的。但是,如果你知道“堆”这个数据结构,用两个堆可以非常高效地解决这个问题。 <br>基础架构研发工程师,写出达到开源水平的框架才是你的目标! 现在互联网上的技术文章、架构分享、开源项目满天飞,照猫画虎做一套基础框架并不难。我就拿RPC框架举例。 <br>不同的公司、不同的人做出的 RPC 框架,架构设计思路都差不多,最后实现的功能也都差不多。但是有的人做出来的框架,Bug 很多、性能一般、扩展性也不好,只能在自己公司仅有的几个项目里面用一下。而有的人做的框架可以开源到 GitHub 上给很多人用,甚至被 Apache 收录。为什么会有这么大的差距呢? <br>我觉得,高手之间的竞争其实就在细节。这些细节包括:你用的算法是不是够优化,数据存取的效率是不是够高,内存是不是够节省等等。这些累积起来,决定了一个框架是不是优秀。所以,如果你还不懂数据结构和算法,没听说过大 O 复杂度分析,不知道怎么分析代码的时间复杂度和空间复杂度,那肯定说不过去了,赶紧来补一补吧! <br>对编程还有追求?不想被行业淘汰?那就不要只会写凑合能用的代码! 何为编程能力强?是代码的可读性好、健壮?还是扩展性好?我觉得没法列,也列不全。但是,在我看来,性能好坏起码是其中一个非常重要的评判标准。但是,如果你连代码的时间复杂度、空间复杂度都不知道怎么分析,怎么写出高性能的代码呢? <br>你可能会说,我在小公司工作,用户量很少,需要处理的数据量也很少,开发中不需要考虑那么多性能的问题,完成功能就可以,用什么数据结构和算法,差别根本不大。但是你真的想“十年如一 日”地做一样的工作吗? 经常有人说,程序员 35 岁之后很容易陷入瓶颈,被行业淘汰,我觉得原因其实就在此。有的人写代码的时候,从来都不考虑非功能性的需求,只是完成功能,凑合能用就好;做事情的时候,也从来没有长远规划,只把眼前事情做好就满足了。 <br>我曾经面试过很多大龄候选人,简历能写十几页,经历的项目有几十个,但是细看下来,每个项目都是重复地堆砌业务逻辑而已,完全没有难度递进,看不出有能力提升。久而久之,十年的积累可能跟一年的积累没有任何区别。这样的人,怎么不会被行业淘汰呢? <br>如果你在一家成熟的公司,或者 BAT 这样的大公司,面对的是千万级甚至亿级的用户,开发的是TB、PB 级别数据的处理系统。性能几乎是开发过程中时刻都要考虑的问题。一个简单的ArrayList、Linked List 的选择问题,就可能会产生成千上万倍的性能差别。这个时候,数据结构和算法的意义就完全凸显出来了。 <br>其实,我觉得,数据结构和算法这个东西,如果你不去学,可能真的这辈子都用不到,也感受不到它的好。但是一旦掌握,你就会常常被它的强大威力所折服。之前你可能需要费很大劲儿来优化的代码,需要花很多心思来设计的架构,用了数据结构和算法之后,很容易就可以解决了。