企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
![](https://img.kancloud.cn/41/e0/41e066af9a6c25a24868d9667253ec98_1241x333.jpg) ***** ## 亚马逊爬虫 - 需求:抓取亚马逊图书的信息 - 目标:抓取亚马逊图书大分类,图书URL地址,列表翻页地址,图书名字,图书作者,图书价格 - URL地址:[https://www.amazon.cn/图书/b/ref=sd\_allcat\_books\_l1?ie=UTF8&node=658390051](https://www.amazon.cn/%E5%9B%BE%E4%B9%A6/b/ref=sd_allcat_books_l1?ie=UTF8&node=658390051) ``` # -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule import re from scrapy_redis.spiders import RedisCrawlSpider """ 目标:抓取亚马逊图书信息, 有图书的名字、封面图片地址、图书url地址、作者、出版社、出版时间、价格、图书所属大分类、图书所属小的分类、分类的url地址 思路: 1. 先完成scrapy的CrawlSpider 2. 改为RedisCrawlSpider 2.1 修改继承关系, 继承RedisCrawlSpider 2.2 start_urls 改为 redis_key 2.3 修改配置文件(多个爬虫配置一次就可以了) """ # 2.1 修改继承关系, 继承RedisCrawlSpider class AmazonSpider(RedisCrawlSpider): name = 'amazon' allowed_domains = ['amazon.cn'] # 修改起始的URL # start_urls = ['https://www.amazon.cn/图书/b/ref=sa_menu_top_books_l1?ie=UTF8&node=658390051'] # 2.2 start_urls 改为 redis_key # 用于指定起始URL在redis数据库的key redis_key = 'amazon:start_urls' rules = ( # 1. 提取分类的URL # restrict_xpaths: 用于指定从那一块区域中提取链接 Rule(LinkExtractor(restrict_xpaths='//*[@id="leftNav"]/ul[1]/ul/div/li'), follow=True), # 2. 提取列表页分页的URL Rule(LinkExtractor(restrict_xpaths='//*[@id="pagn"]'), follow=True), # 3. 提取的详情URL Rule(LinkExtractor(restrict_xpaths='//a[contains(@class, "s-access-detail-page")]'), callback='parse_item'), ) def parse_item(self, response): # 解析详情页数据 # print(response.url) item = {} # 有图书的名字 item['book_name'] = response.xpath('//*[contains(@id,"roductTitle")]/text()').extract_first() # 封面图片地址 item['book_img'] = response.xpath('//*[contains(@id, "mgBlkFront")]/@src').extract_first() # 图书url地址 item['book_url'] = response.url # 作者 item['book_author'] = ''.join(response.xpath('//*[@id="bylineInfo"]/span/a/text()').extract()) # 价格 item['book_price'] = response.xpath('//span[contains(@class, "a-color-price")]/text()').extract_first() publish = re.findall('<li><b>出版社:</b> (.+?);.*?\((.+?)\)</li>', response.text) if len(publish) != 0: # print(publish) # [('中信出版社', '2018年7月1日')] # 出版社 item['book_publisher'] = publish[0][0] # 出版时间 item['book_publish_date'] = publish[0][1] # 图书所属大分类 # 获取包含分类信息的a标签列表 a_s = response.xpath('//span[@class="a-list-item"]/a[text()]') # 获取大分类 if len(a_s) > 0: item['b_category_name'] = a_s[0].xpath('./text()').extract_first().strip() item['b_category_url'] = response.urljoin(a_s[0].xpath('./@href').extract_first()) # 中分类 if len(a_s) > 1: item['m_category_name'] = a_s[1].xpath('./text()').extract_first().strip() item['m_category_url'] = response.urljoin(a_s[1].xpath('./@href').extract_first()) # 图书所属小的分类 if len(a_s) > 2: item['s_category_name'] = a_s[2].xpath('./text()').extract_first().strip() item['s_category_url'] = response.urljoin(a_s[2].xpath('./@href').extract_first()) # 把数据交给引擎 # print(item) yield item ```