#### MCollective架构篇3-Puppet插件的部署及测试
### 1 puppet插件的安装及测试
MCollective可以使用多种方式进行扩展。最普遍的一种扩展MCollective的方式就是重用已经写好的agent插件。这些小的Ruby库可以让MCollective在整个集群中执行自定义的命令。
一个agent插件通常包含一个Ruby库,它必须被分发到所有运行MCollective agent的节点上。另外,一个数据定义文件(DDL)提供了插件接受的传入参数的具体描述,整个DDL文件需要放在MCollective客户端系统上。最后,一个使用指定的agent插件运行MCollective的脚步也需要被安装到所有的MCollective客户端系统上。
**备注:**更多插件可以在[https://github.com/puppetlabs/mcollective-plugins找到。](https://github.com/puppetlabs/mcollective-plugins找到。)
**1.1 安装puppet agent插件**
MCollective本身并不包含一个可以立即使用的Puppet agent插件,需要安装使用。这一插件可以让操作员在需要时运行Puppet agent。他不需要等待Puppet agent的默认运行间隔,也不需要使用其他工具来开始这些任务
**1.1.1 安装MCollective的Agent插件**
~~~
[root@agent1 rpms]# yum install mcollective-puppet-agent mcollective-puppet-common
[root@agent1 rpms]# ll /usr/libexec/mcollective/mcollective/agent/
total 36
-rw-r--r-- 1 root root 1033 May 21 01:34 discovery.rb
-rw-r--r-- 1 root root 8346 May 14 07:28 puppet.ddl
-rw-r--r-- 1 root root 7975 May 14 07:25 puppet.rb
-rw-r--r-- 1 root root 5999 May 21 01:34 rpcutil.ddl
-rw-r--r-- 1 root root 3120 May 21 01:34 rpcutil.rb
[root@puppetserver rpms]# yum install mcollective-puppet-client mcollective-puppet-common
[root@puppetserver rpms]# ll /usr/libexec/mcollective/mcollective/agent/
total 28
-rw-r--r-- 1 root root 1033 May 21 01:34 discovery.rb
-rw-r--r-- 1 root root 8346 May 14 07:28 puppet.ddl
-rw-r--r-- 1 root root 5999 May 21 01:34 rpcutil.ddl
-rw-r--r-- 1 root root 3120 May 21 01:34 rpcutil.rb
~~~
**1.1.2 载入Agent插件**
~~~
[root@puppetserver rpms]# mco #客户端默认在自动载入
The Marionette Collective version 2.2.4
usage: /usr/bin/mco command <options>
Known commands:
completion facts find
help inventory ping
plugin puppet rpc
Type '/usr/bin/mco help' for a detailed list of commands and '/usr/bin/mco help command'
to get detailed help for a command
[root@agent1 ~]# /etc/rc.d/init.d/mcollective restart
Shutting down mcollective: [ OK ]
Starting mcollective: [ OK ]
~~~
**1.1.3 验证Agent插件是否被载入**
~~~
[root@puppetserver rpms]# mco inventory agent1.kisspuppet.com #查看节点agent1是否已经载入puppet插件
Inventory for agent1.kisspuppet.com:
Server Statistics:
Version: 2.2.4
Start Time: Thu Oct 03 16:09:03 +0800 2013
Config File: /etc/mcollective/server.cfg
Collectives: mcollective
Main Collective: mcollective
Process ID: 8902
Total Messages: 3
Messages Passed Filters: 3
Messages Filtered: 0
Expired Messages: 0
Replies Sent: 2
Total Processor Time: 0.46 seconds
System Time: 0.12 seconds
Agents:
discovery puppet rpcutil
Data Plugins:
agent fstat puppet #已经载入puppet插件
resource
Configuration Management Classes:
No classes applied
Facts:
mcollective => 1
~~~
**1.1.4 从MCollective中运行Puppet**
~~~
在运行命令之前,可以在节点查看puppet日志和puppetd服务的启停来判断命令是否调用了puppetd进程。
[root@puppetserver ~]# mco puppet --noop --verbose status #查看节点agent守护进程状态
Discovering hosts using the mc method for 2 second(s) .... 2
* [ ============================================================> ] 2 / 2
agent2.kisspuppet.com: Currently stopped; last completed run 9 hours 35 minutes 36 seconds ago
agent1.kisspuppet.com: Currently stopped; last completed run 9 hours 35 minutes 34 seconds ago
Summary of Applying:
false = 2
Summary of Daemon Running:
stopped = 2
Summary of Enabled:
enabled = 2
[root@puppetserver rpms]# mco puppet -v runonce
Discovering hosts using the mc method for 2 second(s) .... 2
* [ ============================================================> ] 2 / 2
agent1.kisspuppet.com : OK
{:summary=> "Started a background Puppet run using the 'puppet agent --onetime --daemonize --color=false --splay --splaylimit 30' command"}
agent2.kisspuppet.com : OK
{:summary=> "Started a background Puppet run using the 'puppet agent --onetime --daemonize --color=false --splay --splaylimit 30' command"}
---- rpc stats ----
Nodes: 2 / 2
Pass / Fail: 2 / 0
Start Time: Thu Oct 03 16:12:03 +0800 2013
Discovery Time: 2007.23ms
Agent Time: 3591.72ms
Total Time: 5598.94ms
~~~
备注:当使用MCollective运行Puppet时,要求在所有被管理的节点上Puppet agent守护进程都需要被关闭。在每次使用mco puppet -v runonce命令调用puppetd agent时,MCollective都会产生一个新的Puppet进程。这个进程会和任何已经运行的Puppet agent守护进程产生功能性的重复。
当Puppet使用--runonce参数运行时,agent会在后台运行。所以虽然MCollective成功运行了Puppet,但实际上的Puppet agent运行可能[http://kisspuppet.com/2013/11/10/my-fact/并不成功。需要查看Puppet报告来确定每一个Puppet](http://kisspuppet.com/2013/11/10/my-fact/并不成功。需要查看Puppet报告来确定每一个Puppet) agent运行的结果。MCollective返回的OK值表示MCollective服务器成功地启动了puppetd进程并且没有得到任何输出。
**1.2 安装facter插件(测试多次发现存在不稳定性)**
注意:通过facter插件获取节点facter变量信息不是很稳定,因此可将节点facts信息通过inline_template写入/etc/mcollective/facts.yaml中,并在/etc/mcollective/server.cfg中设置factsource = yaml,这样MCollective客户端只需要每次读取这个文件中的facter变量即可。而且在本地目录/var/lib/puppet/yaml/facts/也会生成一份节点的facter信息,模块部分信息如下:
~~~
class mcollective::facter {
file{"/etc/mcollective/facts.yaml":
owner => root,
group => root,
mode => 0440,
loglevel => debug, # reduce noise in Puppet reports
content => inline_template('<%= scope.to_hash.reject { |k,v| k.to_s =~ /(uptime.*|path|timestamp|free|.*password.*|.*psk.*|.*key)/ }.to_yaml %>'),
}
}
[root@agent1 ~]# yum install mcollective-facter-facts
[root@agent1 rpms]# ll /usr/libexec/mcollective/mcollective/facts/
total 12
-rw-r--r-- 1 root root 422 Feb 21 2013 facter_facts.ddl
-rw-r--r-- 1 root root 945 Feb 21 2013 facter_facts.rb
-rw-r--r-- 1 root root 1530 May 21 01:34 yaml_facts.rb
[root@agent1 ~]# vim /etc/mcollective/server.cfg
…
# Facts
#factsource = yaml #注释掉
factsource = facter
plugin.yaml = /etc/mcollective/facts.yaml
[root@agent1 rpms]# /etc/rc.d/init.d/mcollective restart
Shutting down mcollective: [ OK ]
Starting mcollective: [ OK ]
[root@puppetserver rpms]# mco inventory agent1.kisspuppet.com #查看节点agent1是否加载了facts插件
Inventory for agent1.kisspuppet.com:
Server Statistics:
Version: 2.2.4
Start Time: Thu Oct 03 16:31:47 +0800 2013
Config File: /etc/mcollective/server.cfg
Collectives: mcollective
Main Collective: mcollective
Process ID: 9485
Total Messages: 37
Messages Passed Filters: 33
Messages Filtered: 4
Expired Messages: 0
Replies Sent: 32
Total Processor Time: 0.74 seconds
System Time: 0.21 seconds
Agents:
discovery puppet rpcutil
Data Plugins:
agent fstat puppet
resource
Configuration Management Classes:
No classes applied
Facts: #可以看到获取的节点facter信息(获取信息需要一些等待时间)
architecture => x86_64
augeasversion => 0.10.0
bios_release_date => 07/02/2012
bios_vendor => Phoenix Technologies LTD
bios_version => 6.00
blockdevice_fd0_size => 4096
…
uptime_days => 0
uptime_hours => 20
uptime_seconds => 74506
uuid => 564DFBAB-CADC-FC69-36CA-955BFDB30F43
virtual => vmware
[root@puppetserver rpms]# mco facts lsbdistdescription -v #使用mco facts命令对操作系统类型进行显示
Discovering hosts using the mc method for 2 second(s) .... 2
Report for fact: lsbdistdescription
Red Hat Enterprise Linux Server release 5.7 (Tikanga)found 1 times
agent2.kisspuppet.com
Red Hat Enterprise Linux Server release 5.8 (Tikanga)found 1 times
agent1.kisspuppet.com
---- rpc stats ----
Nodes: 2 / 2
Pass / Fail: 2 / 0
Start Time: Thu Oct 03 16:59:04 +0800 2013
Discovery Time: 2004.83ms
Agent Time: 67.32ms
Total Time: 2072.15ms
[root@puppetserver rpms]# mco facts lsbdistdescription #使用mco facts命令对操作系统类型进行统计
Report for fact: lsbdistdescription
Red Hat Enterprise Linux Server release 5.7 (Tikanga)found 1 times
Red Hat Enterprise Linux Server release 5.8 (Tikanga)found 1 times
Finished processing 2 / 2 hosts in 79.15 ms
[root@puppetserver rpms]# mco facts -v --with-fact hostname='agent1' memoryfree #查看主机agent1的剩余内存
Discovering hosts using the mc method for 2 second(s) .... 1
Report for fact: memoryfree
795.13 MB found 1 times
agent1.kisspuppet.com
---- rpc stats ----
Nodes: 1 / 1
Pass / Fail: 1 / 0
Start Time: Thu Oct 03 17:02:13 +0800 2013
Discovery Time: 2005.65ms
Agent Time: 49.37ms
Total Time: 2055.03ms
~~~
**1.3 使用元数据定位主机**
**1.3.1 使用默认facter元数据定位主机**
**1.3.1.1 触发所有系统为RedHat,版本为5.7的所有节点puppetd守护进程**
~~~
[root@puppetserver rpms]# mco puppet -v runonce rpc --np -F operatingsystemrelease='5.7' -F operatingsystem='RedHat'
Discovering hosts using the mc method for 2 second(s) .... 1
agent2.kisspuppet.com : OK
{:summary=> "Started a background Puppet run using the 'puppet agent --onetime --daemonize --color=false --splay --splaylimit 30' command"}
---- rpc stats ----
Nodes: 1 / 1
Pass / Fail: 1 / 0
Start Time: Thu Oct 03 17:03:56 +0800 2013
Discovery Time: 2008.09ms
Agent Time: 1187.69ms
Total Time: 3195.78ms
~~~
**1.3.1.2 触发所有系统为RedHat,kernel版本为2.6.18的所有节点puppetd守护进程**
~~~
[root@puppetserver rpms]# mco puppet -v runonce rpc --np -F kernelversion='2.6.18' -F operatingsystem='RedHat'
Discovering hosts using the mc method for 2 second(s) .... 2
agent2.kisspuppet.com : OK
{:summary=> "Started a background Puppet run using the 'puppet agent --onetime --daemonize --color=false --splay --splaylimit 30' command"}
agent1.kisspuppet.com : OK
{:summary=> "Started a background Puppet run using the 'puppet agent --onetime --daemonize --color=false --splay --splaylimit 30' command"}
---- rpc stats ----
Nodes: 2 / 2
Pass / Fail: 2 / 0
Start Time: Thu Oct 03 17:06:15 +0800 2013
Discovery Time: 2004.32ms
Agent Time: 1308.34ms
Total Time: 3312.66ms
~~~
**1.3.2 使用自定义facter元数据定位主机**
备注:使用自定义facter元数据可以更加灵活的定位主机,如何定义fact可参考博文《通过自定义fact增强MCollective推送更新元数据的灵活性》
**1.3.2.1 在agent1上定义facter my_apply1和my_apply2**
~~~
[root@agent1 mcollective]# facter -p | grep my_apply
my_apply1 => apache
my_apply2 => mysql
~~~
**1.3.2.2 在agent2上定义facter my_apply2和my_apply3**
~~~
[root@agent2 mcollective]# facter -p | grep my_apply
my_apply2 => mysql
my_apply3 => php
~~~
**1.3.2.3 在MCollective客户端测试节点自定义facter是否正确**
~~~
[root@puppetserver facter]# mco inventory agent1.kisspuppet.com | grep my_apply
my_apply1 => apache
my_apply2 => mysql
[root@puppetserver facter]# mco inventory agent2.kisspuppet.com | grep my_apply
my_apply2 => mysql
my_apply3 => php
~~~
**1.3.2.4 通过自定义facter定位主机触发更新**
~~~
[root@puppetserver facter]# mco puppet -v runonce mco facts -v --with-fact my_apply3='php' #筛选节点facter变量my_apply3=php的主机进行触发puppetd守护进程
Discovering hosts using the mc method for 2 second(s) .... 1
* [ ============================================================> ] 1 / 1
agent2.kisspuppet.com : OK
{:summary=> "Started a background Puppet run using the 'puppet agent --onetime --daemonize --color=false --splay --splaylimit 30' command"}
---- rpc stats ----
Nodes: 1 / 1
Pass / Fail: 1 / 0
Start Time: Thu Oct 03 23:33:54 +0800 2013
Discovery Time: 2005.35ms
Agent Time: 1078.86ms
Total Time: 3084.21ms
~~~
- 序
- 第一章:Puppet基础篇
- 编写此系列文档的目的
- 如何学习和使用Puppet
- 安装Puppet前期的准备工作
- 安装、配置并使用Puppet
- 如何建立master和agent之间的认证关系
- Puppet更新方式的选型
- 编写第一个完整测试模块puppet
- 编写第二个完整测试模块yum
- Puppetmaster多环境配置
- 自定义fact实现的四种方式介绍
- 第二章:Puppet扩展篇
- 自定义fact结合ENC(hirea)的应用实践
- 如何使用虚拟资源解决puppet冲突问题
- 如何扩展master的SSL传输性能(apache)
- 如何扩展master的SSL传输性能(nginx)
- 通过多进程增强master的负载均衡能力(nginx+mongrel)
- 通过横向扩展puppetmaster增加架构的灵活性
- puppet代码与版本控制系统的结合
- Puppet dashboard的部署及测试
- 第三章:MCollective架构篇
- MCollecitve架构的引入
- MCollective+MQ架构的部署
- Puppet插件的部署及测试
- MCollective各种插件的部署及测试
- MCollective安全性设计
- MQ的安全性设计
- 多MQ下MCollective高可用部署
- 第四章:Foreman架构的引入
- Foreman作为自动化运维工具为什么会如此强大
- 安装前环境准备
- 安装Foreman1.5架构(all-in-one)
- 安装Foreman1.6架构(foreman与puppetmaster分离)
- 安装Foreman1.7架构(源码,仅测试使用)
- 整合puppetmaster
- Foreman结合mcollective完成push动作
- Foreman结合puppetssh完成push动作
- Foreman的ENC环境与fact环境的对比
- hostgroup如何转换为本地的fact
- 智能变量与puppet模块参数化类的结合
- Foreman报告系统的使用
- Foreman-proxy如何做负载均衡
- Foreman上如何展现代码及文件内容
- Foreman如何和虚拟化管理软件结合
- 如何借助Foreman完成自动化部署操作系统(一)
- 如何借助Foreman完成自动化部署操作系统(二)
- Foreman CLI(Hammer)工具的使用
- Foreman目前的不足之处