> 1.0 翻译:[numbbbbb](https://github.com/numbbbbb) 校对:[shinyzhu](https://github.com/shinyzhu), [stanzhai](https://github.com/stanzhai)
>
> 2.0 翻译+校对:[xtymichael](https://github.com/xtymichael)
* * *
本页内容包括:
[TOC]
通常来说,编程语言教程中的第一个程序应该在屏幕上打印“Hello, world”。在 Swift 中,可以用一行代码实现:
~~~
print("Hello, world")
~~~
如果你写过 C 或者 Objective-C 代码,那你应该很熟悉这种形式——在 Swift 中,这行代码就是一个完整的程序。你不需要为了输入输出或者字符串处理导入一个单独的库。全局作用域中的代码会被自动当做程序的入口点,所以你也不需要`main`函数。你同样不需要在每个语句结尾写上分号。
这个教程会通过一系列编程例子来让你对 Swift 有初步了解,如果你有什么不理解的地方也不用担心——任何本章介绍的内容都会在后面的章节中详细讲解。
> 注意: 为了获得最好的体验,在 Xcode 当中使用代码预览功能。代码预览功能可以让你编辑代码并实时看到运行结果。 [下载Playground](https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programming_Language/GuidedTour.playground.zip)
## 简单值
使用`let`来声明常量,使用`var`来声明变量。一个常量的值,在编译的时候,并不需要有明确的值,但是你只能为它赋值一次。也就是说你可以用常量来表示这样一个值:你只需要决定一次,但是需要使用很多次。
~~~
var myVariable = 42
myVariable = 50
let myConstant = 42
~~~
常量或者变量的类型必须和你赋给它们的值一样。然而,你不用明确地声明类型,声明的同时赋值的话,编译器会自动推断类型。在上面的例子中,编译器推断出`myVariable`是一个整数(integer)因为它的初始值是整数。
如果初始值没有提供足够的信息(或者没有初始值),那你需要在变量后面声明类型,用冒号分割。
~~~
let implicitInteger = 70
let implicitDouble = 70.0
let explicitDouble: Double = 70
~~~
> 练习: 创建一个常量,显式指定类型为`Float`并指定初始值为4。
值永远不会被隐式转换为其他类型。如果你需要把一个值转换成其他类型,请显式转换。
~~~
let label = "The width is"
let width = 94
let widthLabel = label + String(width)
~~~
> 练习: 删除最后一行中的`String`,错误提示是什么?
有一种更简单的把值转换成字符串的方法:把值写到括号中,并且在括号之前写一个反斜杠。例如:
~~~
let apples = 3
let oranges = 5
let appleSummary = "I have \(apples) apples."
let fruitSummary = "I have \(apples + oranges) pieces of fruit."
~~~
> 练习: 使用`\()`来把一个浮点计算转换成字符串,并加上某人的名字,和他打个招呼。
使用方括号`[]`来创建数组和字典,并使用下标或者键(key)来访问元素。
~~~
var shoppingList = ["catfish", "water", "tulips", "blue paint"]
shoppingList[1] = "bottle of water"
~~~
~~~
var occupations = [
"Malcolm": "Captain",
"Kaylee": "Mechanic",
]
occupations["Jayne"] = "Public Relations"
~~~
要创建一个空数组或者字典,使用初始化语法。
~~~
let emptyArray = [String]()
let emptyDictionary = [String: Float]()
~~~
如果类型信息可以被推断出来,你可以用`[]`和`[:]`来创建空数组和空字典——就像你声明变量或者给函数传参数的时候一样。
~~~
shoppingList = []
occupations = [:]
~~~
## 控制流
使用`if`和`switch`来进行条件操作,使用`for-in`、`for`、`while`和`repeat-while`来进行循环。包裹条件和循环变量括号可以省略,但是语句体的大括号是必须的。
~~~
let individualScores = [75, 43, 103, 87, 12]
var teamScore = 0
for score in individualScores {
if score > 50 {
teamScore += 3
} else {
teamScore += 1
}
}
print(teamScore)
~~~
在`if`语句中,条件必须是一个布尔表达式——这意味着像`if score { ... }`这样的代码将报错,而不会隐形地与 0 做对比。
你可以一起使用`if`和`let`来处理值缺失的情况。这些值可由可选值来代表。一个可选的值是一个具体的值或者是`nil`以表示值缺失。在类型后面加一个问号来标记这个变量的值是可选的。
~~~
var optionalString: String? = "Hello"
print(optionalString == nil)
var optionalName: String? = "John Appleseed"
var greeting = "Hello!"
if let name = optionalName {
greeting = "Hello, \(name)"
}
~~~
> 练习: 把`optionalName`改成`nil`,greeting会是什么?添加一个`else`语句,当`optionalName`是`nil`时给greeting赋一个不同的值。
如果变量的可选值是`nil`,条件会判断为`false`,大括号中的代码会被跳过。如果不是`nil`,会将值赋给`let`后面的常量,这样代码块中就可以使用这个值了。
`switch`支持任意类型的数据以及各种比较操作——不仅仅是整数以及测试相等。
~~~
let vegetable = "red pepper"
switch vegetable {
case "celery":
let vegetableComment = "Add some raisins and make ants on a log."
case "cucumber", "watercress":
let vegetableComment = "That would make a good tea sandwich."
case let x where x.hasSuffix("pepper"):
let vegetableComment = "Is it a spicy \(x)?"
default:
let vegetableComment = "Everything tastes good in soup."
}
~~~
> 练习: 删除`default`语句,看看会有什么错误?
声明`let`可用于匹配某部分固定值的模式
运行`switch`中匹配到的子句之后,程序会退出`switch`语句,并不会继续向下运行,所以不需要在每个子句结尾写`break`。
你可以使用`for-in`来遍历字典,需要两个变量来表示每个键值对。字典是一个无序的集合,所以他们的键和值以任意顺序迭代结束。
~~~
let interestingNumbers = [
"Prime": [2, 3, 5, 7, 11, 13],
"Fibonacci": [1, 1, 2, 3, 5, 8],
"Square": [1, 4, 9, 16, 25],
]
var largest = 0
for (kind, numbers) in interestingNumbers {
for number in numbers {
if number > largest {
largest = number
}
}
}
print(largest)
~~~
> 练习: 添加另一个变量来记录现在和之前最大数字的类型。
使用`while`来重复运行一段代码直到不满足条件。循环条件也可以在结尾,保证能至少循环一次。
~~~
var n = 2
while n < 100 {
n = n * 2
}
print(n)
var m = 2
repeat {
m = m * 2
} while m < 100
print(m)
~~~
你可以在循环中使用`..<`来表示范围,也可以使用传统的写法,两者是等价的:
~~~
var firstForLoop = 0
for i in 0..<4 {
firstForLoop += i
}
print(firstForLoop)
var secondForLoop = 0
for var i = 0; i < 4; ++i {
secondForLoop += i
}
print(secondForLoop)
~~~
使用`..<`创建的范围不包含上界,如果想包含的话需要使用`...`。
## 函数和闭包
使用`func`来声明一个函数,使用名字和参数来调用函数。使用`->`来指定函数返回值的类型。
~~~
func greet(name: String, day: String) -> String {
return "Hello \(name), today is \(day)."
}
greet("Bob", "Tuesday")
~~~
> 练习: 删除`day`参数,添加一个参数来表示今天吃了什么午饭。
使用元组来让一个函数返回多个值。该元组的元素可以用名称或数字来表示。
~~~
func calculateStatistics(scores: [Int]) -> (min: Int, max: Int, sum: Int) {
var min = scores[0]
var max = scores[0]
var sum = 0
for score in scores {
if score > max {
max = score
} else if score < min {
min = score
}
sum += score
}
return (min, max, sum)
}
let statistics = calculateStatistics([5, 3, 100, 3, 9])
print(statistics.sum)
print(statistics.2)
~~~
函数可以带有可变个数的参数,这些参数在函数内表现为数组的形式:
~~~
func sumOf(numbers: Int...) -> Int {
var sum = 0
for number in numbers {
sum += number
}
return sum
}
sumOf()
sumOf(42, 597, 12)
~~~
> 练习: 写一个计算参数平均值的函数。
函数可以嵌套。被嵌套的函数可以访问外侧函数的变量,你可以使用嵌套函数来重构一个太长或者太复杂的函数。
~~~
func returnFifteen() -> Int {
var y = 10
func add() {
y += 5
}
add()
return y
}
returnFifteen()
~~~
函数是第一等类型,这意味着函数可以作为另一个函数的返回值。
~~~
func makeIncrementer() -> (Int -> Int) {
func addOne(number: Int) -> Int {
return 1 + number
}
return addOne
}
var increment = makeIncrementer()
increment(7)
~~~
函数也可以当做参数传入另一个函数。
~~~
func hasAnyMatches(list: [Int], condition: Int -> Bool) -> Bool {
for item in list {
if condition(item) {
return true
}
}
return false
}
func lessThanTen(number: Int) -> Bool {
return number < 10
}
var numbers = [20, 19, 7, 12]
hasAnyMatches(numbers, lessThanTen)
~~~
函数实际上是一种特殊的闭包:它是一段能之后被调取的代码。闭包中的代码能访问闭包所建作用域中能得到的变量和函数,即使闭包是在一个不同的作用域被执行的 - 你已经在嵌套函数例子中所看到。你可以使用`{}`来创建一个匿名闭包。使用`in`将参数和返回值类型声明与闭包函数体进行分离。
~~~
numbers.map({
(number: Int) -> Int in
let result = 3 * number
return result
})
~~~
> 练习: 重写闭包,对所有奇数返回0。
有很多种创建更简洁的闭包的方法。如果一个闭包的类型已知,比如作为一个回调函数,你可以忽略参数的类型和返回值。单个语句闭包会把它语句的值当做结果返回。
~~~
let mappedNumbers = numbers.map({ number in 3 * number })
print(mappedNumbers)
~~~
你可以通过参数位置而不是参数名字来引用参数——这个方法在非常短的闭包中非常有用。当一个闭包作为最后一个参数传给一个函数的时候,它可以直接跟在括号后面。当一个闭包是传给函数的唯一参数,你可以完全忽略括号。
~~~
let sortedNumbers = sorted(numbers) { $0 > $1 }
print(sortedNumbers)
~~~
## 对象和类
使用`class`和类名来创建一个类。类中属性的声明和常量、变量声明一样,唯一的区别就是它们的上下文是类。同样,方法和函数声明也一样。
~~~
class Shape {
var numberOfSides = 0
func simpleDescription() -> String {
return "A shape with \(numberOfSides) sides."
}
}
~~~
> 练习: 使用`let`添加一个常量属性,再添加一个接收一个参数的方法。
要创建一个类的实例,在类名后面加上括号。使用点语法来访问实例的属性和方法。
~~~
var shape = Shape()
shape.numberOfSides = 7
var shapeDescription = shape.simpleDescription()
~~~
这个版本的`Shape`类缺少了一些重要的东西:一个构造函数来初始化类实例。使用`init`来创建一个构造器。
~~~
class NamedShape {
var numberOfSides: Int = 0
var name: String
init(name: String) {
self.name = name
}
func simpleDescription() -> String {
return "A shape with \(numberOfSides) sides."
}
}
~~~
注意`self`被用来区别实例变量。当你创建实例的时候,像传入函数参数一样给类传入构造器的参数。每个属性都需要赋值——无论是通过声明(就像`numberOfSides`)还是通过构造器(就像`name`)。
如果你需要在删除对象之前进行一些清理工作,使用`deinit`创建一个析构函数。
子类的定义方法是在它们的类名后面加上父类的名字,用冒号分割。创建类的时候并不需要一个标准的根类,所以你可以忽略父类。
子类如果要重写父类的方法的话,需要用`override`标记——如果没有添加`override`就重写父类方法的话编译器会报错。编译器同样会检测`override`标记的方法是否确实在父类中。
~~~
class Square: NamedShape {
var sideLength: Double
init(sideLength: Double, name: String) {
self.sideLength = sideLength
super.init(name: name)
numberOfSides = 4
}
func area() -> Double {
return sideLength * sideLength
}
override func simpleDescription() -> String {
return "A square with sides of length \(sideLength)."
}
}
let test = Square(sideLength: 5.2, name: "my test square")
test.area()
test.simpleDescription()
~~~
> 练习: 创建`NamedShape`的另一个子类`Circle`,构造器接收两个参数,一个是半径一个是名称,在子类`Circle`中实现`area()`和`simpleDescription()`方法。
除了储存简单的属性之外,属性可以有 getter 和 setter 。
~~~
class EquilateralTriangle: NamedShape {
var sideLength: Double = 0.0
init(sideLength: Double, name: String) {
self.sideLength = sideLength
super.init(name: name)
numberOfSides = 3
}
var perimeter: Double {
get {
return 3.0 * sideLength
}
set {
sideLength = newValue / 3.0
}
}
override func simpleDescription() -> String {
return "An equilateral triagle with sides of length \(sideLength)."
}
}
var triangle = EquilateralTriangle(sideLength: 3.1, name: "a triangle")
print(triangle.perimeter)
triangle.perimeter = 9.9
print(triangle.sideLength)
~~~
在`perimeter`的 setter 中,新值的名字是`newValue`。你可以在`set`之后显式的设置一个名字。
注意`EquilateralTriangle`类的构造器执行了三步:
1. 设置子类声明的属性值
2. 调用父类的构造器
3. 改变父类定义的属性值。其他的工作比如调用方法、getters和setters也可以在这个阶段完成。
如果你不需要计算属性,但是仍然需要在设置一个新值之前或者之后运行代码,使用`willSet`和`didSet`。
比如,下面的类确保三角形的边长总是和正方形的边长相同。
~~~
class TriangleAndSquare {
var triangle: EquilateralTriangle {
willSet {
square.sideLength = newValue.sideLength
}
}
var square: Square {
willSet {
triangle.sideLength = newValue.sideLength
}
}
init(size: Double, name: String) {
square = Square(sideLength: size, name: name)
triangle = EquilateralTriangle(sideLength: size, name: name)
}
}
var triangleAndSquare = TriangleAndSquare(size: 10, name: "another test shape")
print(triangleAndSquare.square.sideLength)
print(triangleAndSquare.triangle.sideLength)
triangleAndSquare.square = Square(sideLength: 50, name: "larger square")
print(triangleAndSquare.triangle.sideLength)
~~~
处理变量的可选值时,你可以在操作(比如方法、属性和子脚本)之前加`?`。如果`?`之前的值是`nil`,`?`后面的东西都会被忽略,并且整个表达式返回`nil`。否则,`?`之后的东西都会被运行。在这两种情况下,整个表达式的值也是一个可选值。
~~~
let optionalSquare: Square? = Square(sideLength: 2.5, name: "optional square")
let sideLength = optionalSquare?.sideLength
~~~
## 枚举和结构体
使用`enum`来创建一个枚举。就像类和其他所有命名类型一样,枚举可以包含方法。
~~~
enum Rank: Int {
case Ace = 1
case Two, Three, Four, Five, Six, Seven, Eight, Nine, Ten
case Jack, Queen, King
func simpleDescription() -> String {
switch self {
case .Ace:
return "ace"
case .Jack:
return "jack"
case .Queen:
return "queen"
case .King:
return "king"
default:
return String(self.rawValue)
}
}
}
let ace = Rank.Ace
let aceRawValue = ace.rawValue
~~~
> 练习: 写一个函数,通过比较它们的原始值来比较两个`Rank`值。
在上面的例子中,枚举原始值的类型是`Int`,所以你只需要设置第一个原始值。剩下的原始值会按照顺序赋值。你也可以使用字符串或者浮点数作为枚举的原始值。使用`rawValue`来访问一个枚举成员的原始值。
使用`init?(rawValue:)`构造器来从原始值中枚举一个例子。
~~~
if let convertedRank = Rank(rawValue: 3) {
let threeDescription = convertedRank.simpleDescription()
}
~~~
枚举的成员值是实际值,并不是原始值的另一种表达方法。实际上,以防原始值没有意义,你不需要设置。
~~~
enum Suit {
case Spades, Hearts, Diamonds, Clubs
func simpleDescription() -> String {
switch self {
case .Spades:
return "spades"
case .Hearts:
return "hearts"
case .Diamonds:
return "diamonds"
case .Clubs:
return "clubs"
}
}
}
let hearts = Suit.Hearts
let heartsDescription = hearts.simpleDescription()
~~~
> 练习: 给`Suit`添加一个`color()`方法,对`spades`和`clubs`返回“black”,对`hearts`和`diamonds`返回“red”。
注意,有两种方式可以引用`Hearts`成员:给`hearts`常量赋值时,枚举成员`Suit.Hearts`需要用全名来引用,因为常量没有显式指定类型。在`switch`里,枚举成员使用缩写`.Hearts`来引用,因为`self`的值已经知道是一个`suit`。已知变量类型的情况下你可以使用缩写。
使用`struct`来创建一个结构体。结构体和类有很多相同的地方,比如方法和构造器。它们之间最大的一个区别就是结构体是传值,类是传引用。
~~~
struct Card {
var rank: Rank
var suit: Suit
func simpleDescription() -> String {
return "The \(rank.simpleDescription()) of \(suit.simpleDescription())"
}
}
let threeOfSpades = Card(rank: .Three, suit: .Spades)
let threeOfSpadesDescription = threeOfSpades.simpleDescription()
~~~
> 练习: 给`Card`添加一个方法,创建一副完整的扑克牌并把每张牌的 rank 和 suit 对应起来。
一个枚举成员的实例可以有实例值。相同枚举成员的实例可以有不同的值。创建实例的时候传入值即可。实例值和原始值是不同的:枚举成员的原始值对于所有实例都是相同的,而且你是在定义枚举的时候设置原始值。
例如,考虑从服务器获取日出和日落的时间。服务器会返回正常结果或者错误信息。
~~~
enum ServerResponse {
case Result(String, String)
case Error(String)
}
let success = ServerResponse.Result("6:00 am", "8:09 pm")
let failure = ServerResponse.Error("Out of cheese.")
switch success {
case let .Result(sunrise, sunset):
let serverResponse = "Sunrise is at \(sunrise) and sunset is at \(sunset)."
case let .Error(error):
let serverResponse = "Failure... \(error)"
}
~~~
> 练习: 给`ServerResponse`和`switch`添加第三种情况。
注意如何从`ServerResponse`中提取日升和日落时间并用得到的值用来和`switch`的情况作比较。
## 协议和扩展
使用`protocol`来声明一个协议。
~~~
protocol ExampleProtocol {
var simpleDescription: String { get }
mutating func adjust()
}
~~~
类、枚举和结构体都可以实现协议。
~~~
class SimpleClass: ExampleProtocol {
var simpleDescription: String = "A very simple class."
var anotherProperty: Int = 69105
func adjust() {
simpleDescription += " Now 100% adjusted."
}
}
var a = SimpleClass()
a.adjust()
let aDescription = a.simpleDescription
struct SimpleStructure: ExampleProtocol {
var simpleDescription: String = "A simple structure"
mutating func adjust() {
simpleDescription += " (adjusted)"
}
}
var b = SimpleStructure()
b.adjust()
let bDescription = b.simpleDescription
~~~
> 练习: 写一个实现这个协议的枚举。
注意声明`SimpleStructure`时候`mutating`关键字用来标记一个会修改结构体的方法。`SimpleClass`的声明不需要标记任何方法因为类中的方法经常会修改类。
使用`extension`来为现有的类型添加功能,比如新的方法和参数。你可以使用扩展在别处修改定义,甚至是从外部库或者框架引入的一个类型,使得这个类型遵循某个协议。
~~~
extension Int: ExampleProtocol {
var simpleDescription: String {
return "The number \(self)"
}
mutating func adjust() {
self += 42
}
}
print(7.simpleDescription)
~~~
> 练习: 给`Double`类型写一个扩展,添加`absoluteValue`功能。
你可以像使用其他命名类型一样使用协议名——例如,创建一个有不同类型但是都实现一个协议的对象集合。当你处理类型是协议的值时,协议外定义的方法不可用。
~~~
let protocolValue: ExampleProtocol = a
protocolValue.simpleDescription
// protocolValue.anotherProperty // Uncomment to see the error
~~~
即使`protocolValue`变量运行时的类型是`simpleClass`,编译器会把它的类型当做`ExampleProtocol`。这表示你不能调用类在它实现的协议之外实现的方法或者属性。
## 泛型
在尖括号里写一个名字来创建一个泛型函数或者类型。
~~~
func repeatItem<Item>(item: Item, numberOfTimes: Int) -> [Item] {
var result = [Item]()
for _ in 0..<numberOfTimes {
result.append(item)
}
return result
}
repeatItem("knock", numberOfTimes:4)
~~~
你也可以创建泛型函数、方法、类、枚举和结构体。
~~~
// Reimplement the Swift standard library's optional type
enum OptionalValue<T> {
case None
case Some(T)
}
var possibleInteger: OptionalValue<Int> = .None
possibleInteger = .Some(100)
~~~
在类型名后面使用`where`来指定对类型的需求,比如,限定类型实现某一个协议,限定两个类型是相同的,或者限定某个类必须有一个特定的父类
~~~
func anyCommonElements <T, U where T: SequenceType, U: SequenceType, T.Generator.Element: Equatable, T.Generator.Element == U.Generator.Element> (lhs: T, _ rhs: U) -> Bool {
for lhsItem in lhs {
for rhsItem in rhs {
if lhsItem == rhsItem {
return true
}
}
}
return false
}
anyCommonElements([1, 2, 3], [3])
~~~
> 练习: 修改`anyCommonElements(_:_:)`函数来创建一个函数,返回一个数组,内容是两个序列的共有元素。
简单起见,你可以忽略`where`,只在冒号后面写协议或者类名。`<T: Equatable>`和`<T where T: Equatable>`是等价的。
- 介紹
- 欢迎使用 Swift
- 关于 Swift
- Swift 初见
- Swift 版本历史记录
- Swift1.0 发布内容
- Swift 教程
- 基础部分
- 基本运算符
- 字符串和字符
- 集合类型
- 控制流
- 函数
- 闭包
- 枚举
- 类和结构体
- 属性
- 方法
- 下标脚本
- 继承
- 构造过程
- 析构过程
- 自动引用计数
- 可选链
- 错误处理
- 类型转换
- 嵌套类型
- 扩展
- 协议
- 泛型
- 权限控制
- 高级操作符
- 语言参考
- 关于语言参考
- 词法结构
- 类型
- 表达式
- 语句
- 声明
- 特性
- 模式
- 泛型参数
- 语法总结
- 苹果官方Blog官方翻译
- Access Control 权限控制的黑与白
- 造个类型不是梦-白话Swift类型创建
- WWDC里面的那个“大炮打气球”
- Swift与C语言指针友好合作
- 引用类型和值类型的恩怨
- 访问控制和Protected
- 可选类型完美解决占位问题