# 枚举
*枚举*为一组相关的值定义了一个共同的类型,使你可以在你的代码中以类型安全的方式来使用这些值。
如果你熟悉 C 语言,你会知道在 C 语言中,枚举会为一组整型值分配相关联的名称。Swift 中的枚举更加灵活,不必给每一个枚举成员提供一个值。如果给枚举成员提供一个值(称为原始值),则该值的类型可以是字符串、字符,或是一个整型值或浮点数。
此外,枚举成员可以指定*任意*类型的关联值存储到枚举成员中,就像其他语言中的联合体(unions)和变体(variants)。你可以在一个枚举中定义一组相关的枚举成员,每一个枚举成员都可以有适当类型的关联值。
在 Swift 中,枚举类型是一等(first-class)类型。它们采用了很多在传统上只被类(class)所支持的特性,例如计算属性(computed properties),用于提供枚举值的附加信息,实例方法(instance methods),用于提供和枚举值相关联的功能。枚举也可以定义构造函数(initializers)来提供一个初始值;可以在原始实现的基础上扩展它们的功能;还可以遵循协议(protocols)来提供标准的功能。
想了解更多相关信息,请参见 [属性](./10_Properties.md),[方法](./11_Methods.md),[构造过程](./14_Initialization.md),[扩展](./20_Extensions.md) 和 [协议](./21_Protocols.md)。
## 枚举语法 {#enumeration-syntax}
使用 `enum` 关键词来创建枚举并且把它们的整个定义放在一对大括号内:
```swift
enum SomeEnumeration {
// 枚举定义放在这里
}
```
下面是用枚举表示指南针四个方向的例子:
```swift
enum CompassPoint {
case north
case south
case east
case west
}
```
枚举中定义的值(如 `north`,`south`,`east` 和 `west`)是这个枚举的*成员值*(或*成员*)。你可以使用 `case` 关键字来定义一个新的枚举成员值。
> 注意
>
> 与 C 和 Objective-C 不同,Swift 的枚举成员在被创建时不会被赋予一个默认的整型值。在上面的 `CompassPoint` 例子中,`north`,`south`,`east` 和 `west` 不会被隐式地赋值为 `0`,`1`,`2` 和 `3`。相反,这些枚举成员本身就是完备的值,这些值的类型是已经明确定义好的 `CompassPoint` 类型。
多个成员值可以出现在同一行上,用逗号隔开:
```swift
enum Planet {
case mercury, venus, earth, mars, jupiter, saturn, uranus, neptune
}
```
每个枚举定义了一个全新的类型。像 Swift 中其他类型一样,它们的名字(例如 `CompassPoint` 和 `Planet`)以一个大写字母开头。给枚举类型起一个单数名字而不是复数名字,以便于:
```swift
var directionToHead = CompassPoint.west
```
`directionToHead` 的类型可以在它被 `CompassPoint` 的某个值初始化时推断出来。一旦 `directionToHead` 被声明为 `CompassPoint` 类型,你可以使用更简短的点语法将其设置为另一个 `CompassPoint` 的值:
```swift
directionToHead = .east
```
当 `directionToHead` 的类型已知时,再次为其赋值可以省略枚举类型名。在使用具有显式类型的枚举值时,这种写法让代码具有更好的可读性。
## 使用 Switch 语句匹配枚举值 {#matching-enumeration-values-with-a-switch-statement}
你可以使用 `switch` 语句匹配单个枚举值:
```swift
directionToHead = .south
switch directionToHead {
case .north:
print("Lots of planets have a north")
case .south:
print("Watch out for penguins")
case .east:
print("Where the sun rises")
case .west:
print("Where the skies are blue")
}
// 打印“Watch out for penguins”
```
你可以这样理解这段代码:
“判断 `directionToHead` 的值。当它等于 `.north`,打印 `“Lots of planets have a north”`。当它等于 `.south`,打印 `“Watch out for penguins”`。”
……以此类推。
正如在 [控制流](./05_Control_Flow.md) 中介绍的那样,在判断一个枚举类型的值时,`switch` 语句必须穷举所有情况。如果忽略了 `.west` 这种情况,上面那段代码将无法通过编译,因为它没有考虑到 `CompassPoint` 的全部成员。强制穷举确保了枚举成员不会被意外遗漏。
当不需要匹配每个枚举成员的时候,你可以提供一个 `default` 分支来涵盖所有未明确处理的枚举成员:
```swift
let somePlanet = Planet.earth
switch somePlanet {
case .earth:
print("Mostly harmless")
default:
print("Not a safe place for humans")
}
// 打印“Mostly harmless”
```
## 枚举成员的遍历 {#iterating-over-enumeration-cases}
在一些情况下,你会需要得到一个包含枚举所有成员的集合。可以通过如下代码实现:
令枚举遵循 `CaseIterable` 协议。Swift 会生成一个 `allCases` 属性,用于表示一个包含枚举所有成员的集合。下面是一个例子:
```swift
enum Beverage: CaseIterable {
case coffee, tea, juice
}
let numberOfChoices = Beverage.allCases.count
print("\(numberOfChoices) beverages available")
// 打印“3 beverages available”
```
在前面的例子中,通过 `Beverage.allCases` 可以访问到包含 `Beverage` 枚举所有成员的集合。`allCases` 的使用方法和其它一般集合一样——集合中的元素是枚举类型的实例,所以在上面的情况中,这些元素是 `Beverage` 值。在前面的例子中,统计了总共有多少个枚举成员。而在下面的例子中,则使用 `for` 循环来遍历所有枚举成员。
```swift
for beverage in Beverage.allCases {
print(beverage)
}
// coffee
// tea
// juice
```
在前面的例子中,使用的语法表明这个枚举遵循 [CaseIterable](https://developer.apple.com/documentation/swift/caseiterable) 协议。想了解 protocols 相关信息,请参见 [协议](./21_Protocols.md)。
## 关联值 {#associated-values}
枚举语法那一小节的例子演示了如何定义和分类枚举的成员。你可以为 `Planet.earth` 设置一个常量或者变量,并在赋值之后查看这个值。然而,有时候把其他类型的值和成员值一起存储起来会很有用。这额外的信息称为*关联值*,并且你每次在代码中使用该枚举成员时,还可以修改这个关联值。
你可以定义 Swift 枚举来存储任意类型的关联值,如果需要的话,每个枚举成员的关联值类型可以各不相同。枚举的这种特性跟其他语言中的可识别联合(discriminated unions),标签联合(tagged unions),或者变体(variants)相似。
例如,假设一个库存跟踪系统需要利用两种不同类型的条形码来跟踪商品。有些商品上标有使用 `0` 到 `9` 的数字的 UPC 格式的一维条形码。每一个条形码都有一个代表数字系统的数字,该数字后接五位代表厂商代码的数字,接下来是五位代表“产品代码”的数字。最后一个数字是检查位,用来验证代码是否被正确扫描:
<img width="252" height="120" alt="" src="https://docs.swift.org/swift-book/_images/barcode_UPC_2x.png">
其他商品上标有 QR 码格式的二维码,它可以使用任何 ISO 8859-1 字符,并且可以编码一个最多拥有 2,953 个字符的字符串:
<img width="169" height="169" alt="" src="https://docs.swift.org/swift-book/_images/barcode_QR_2x.png">
这便于库存跟踪系统用包含四个整型值的元组存储 UPC 码,以及用任意长度的字符串储存 QR 码。
在 Swift 中,使用如下方式定义表示两种商品条形码的枚举:
```swift
enum Barcode {
case upc(Int, Int, Int, Int)
case qrCode(String)
}
```
以上代码可以这么理解:
“定义一个名为 `Barcode` 的枚举类型,它的一个成员值是具有 `(Int,Int,Int,Int)` 类型关联值的 `upc`,另一个成员值是具有 `String` 类型关联值的 `qrCode`。”
这个定义不提供任何 `Int` 或 `String` 类型的关联值,它只是定义了,当 `Barcode` 常量和变量等于 `Barcode.upc` 或 `Barcode.qrCode` 时,可以存储的关联值的类型。
然后你可以使用任意一种条形码类型创建新的条形码,例如:
```swift
var productBarcode = Barcode.upc(8, 85909, 51226, 3)
```
上面的例子创建了一个名为 `productBarcode` 的变量,并将 `Barcode.upc` 赋值给它,关联的元组值为 `(8, 85909, 51226, 3)`。
同一个商品可以被分配一个不同类型的条形码,例如:
```swift
productBarcode = .qrCode("ABCDEFGHIJKLMNOP")
```
这时,原始的 `Barcode.upc` 和其整数关联值被新的 `Barcode.qrCode` 和其字符串关联值所替代。`Barcode` 类型的常量和变量可以存储一个 `.upc` 或者一个 `.qrCode`(连同它们的关联值),但是在同一时间只能存储这两个值中的一个。
你可以使用一个 switch 语句来检查不同的条形码类型,和之前使用 Switch 语句来匹配枚举值的例子一样。然而,这一次,关联值可以被提取出来作为 switch 语句的一部分。你可以在 `switch` 的 case 分支代码中提取每个关联值作为一个常量(用 `let` 前缀)或者作为一个变量(用 `var` 前缀)来使用:
```swift
switch productBarcode {
case .upc(let numberSystem, let manufacturer, let product, let check):
print("UPC: \(numberSystem), \(manufacturer), \(product), \(check).")
case .qrCode(let productCode):
print("QR code: \(productCode).")
}
// 打印“QR code: ABCDEFGHIJKLMNOP.”
```
如果一个枚举成员的所有关联值都被提取为常量,或者都被提取为变量,为了简洁,你可以只在成员名称前标注一个 `let` 或者 `var`:
```swift
switch productBarcode {
case let .upc(numberSystem, manufacturer, product, check):
print("UPC: \(numberSystem), \(manufacturer), \(product), \(check).")
case let .qrCode(productCode):
print("QR code: \(productCode).")
}
// 打印“QR code: ABCDEFGHIJKLMNOP.”
```
## 原始值 {#raw-values}
在 [关联值](#associated-values) 小节的条形码例子中,演示了如何声明存储不同类型关联值的枚举成员。作为关联值的替代选择,枚举成员可以被默认值(称为*原始值*)预填充,这些原始值的类型必须相同。
这是一个使用 ASCII 码作为原始值的枚举:
```swift
enum ASCIIControlCharacter: Character {
case tab = "\t"
case lineFeed = "\n"
case carriageReturn = "\r"
}
```
枚举类型 `ASCIIControlCharacter` 的原始值类型被定义为 `Character`,并设置了一些比较常见的 ASCII 控制字符。`Character` 的描述详见 [字符串和字符](./03_Strings_and_Characters.md) 部分。
原始值可以是字符串、字符,或者任意整型值或浮点型值。每个原始值在枚举声明中必须是唯一的。
> 注意
>
> 原始值和关联值是不同的。原始值是在定义枚举时被预先填充的值,像上述三个 ASCII 码。对于一个特定的枚举成员,它的原始值始终不变。关联值是创建一个基于枚举成员的常量或变量时才设置的值,枚举成员的关联值可以变化。
### 原始值的隐式赋值 {#implicitly-assigned-raw-values}
在使用原始值为整数或者字符串类型的枚举时,不需要显式地为每一个枚举成员设置原始值,Swift 将会自动为你赋值。
例如,当使用整数作为原始值时,隐式赋值的值依次递增 `1`。如果第一个枚举成员没有设置原始值,其原始值将为 `0`。
下面的枚举是对之前 `Planet` 这个枚举的一个细化,利用整型的原始值来表示每个行星在太阳系中的顺序:
```swift
enum Planet: Int {
case mercury = 1, venus, earth, mars, jupiter, saturn, uranus, neptune
}
```
在上面的例子中,`Plant.mercury` 的显式原始值为 `1`,`Planet.venus` 的隐式原始值为 `2`,依次类推。
当使用字符串作为枚举类型的原始值时,每个枚举成员的隐式原始值为该枚举成员的名称。
下面的例子是 `CompassPoint` 枚举的细化,使用字符串类型的原始值来表示各个方向的名称:
```swift
enum CompassPoint: String {
case north, south, east, west
}
```
上面例子中,`CompassPoint.south` 拥有隐式原始值 `south`,依次类推。
使用枚举成员的 `rawValue` 属性可以访问该枚举成员的原始值:
```swift
let earthsOrder = Planet.earth.rawValue
// earthsOrder 值为 3
let sunsetDirection = CompassPoint.west.rawValue
// sunsetDirection 值为 "west"
```
### 使用原始值初始化枚举实例 {#initializing-from-a-raw-value}
如果在定义枚举类型的时候使用了原始值,那么将会自动获得一个初始化方法,这个方法接收一个叫做 `rawValue` 的参数,参数类型即为原始值类型,返回值则是枚举成员或 `nil`。你可以使用这个初始化方法来创建一个新的枚举实例。
这个例子利用原始值 `7` 创建了枚举成员 `Uranus`:
```swift
let possiblePlanet = Planet(rawValue: 7)
// possiblePlanet 类型为 Planet? 值为 Planet.uranus
```
然而,并非所有 `Int` 值都可以找到一个匹配的行星。因此,原始值构造器总是返回一个*可选*的枚举成员。在上面的例子中,`possiblePlanet` 是 `Planet?` 类型,或者说“可选的 `Planet`”。
> 注意
>
> 原始值构造器是一个可失败构造器,因为并不是每一个原始值都有与之对应的枚举成员。更多信息请参见 [可失败构造器](../03_language_reference/06_Declarations.md#failable-initializers)。
如果你试图寻找一个位置为 `11` 的行星,通过原始值构造器返回的可选 `Planet` 值将是 `nil`:
```swift
let positionToFind = 11
if let somePlanet = Planet(rawValue: positionToFind) {
switch somePlanet {
case .earth:
print("Mostly harmless")
default:
print("Not a safe place for humans")
}
} else {
print("There isn't a planet at position \(positionToFind)")
}
// 打印“There isn't a planet at position 11”
```
这个例子使用了可选绑定(optional binding),试图通过原始值 `11` 来访问一个行星。`if let somePlanet = Planet(rawValue: 11)` 语句创建了一个可选 `Planet`,如果可选 `Planet` 的值存在,就会赋值给 `somePlanet`。在这个例子中,无法检索到位置为 `11` 的行星,所以 `else` 分支被执行。
## 递归枚举 {#recursive-enumerations}
*递归枚举*是一种枚举类型,它有一个或多个枚举成员使用该枚举类型的实例作为关联值。使用递归枚举时,编译器会插入一个间接层。你可以在枚举成员前加上 `indirect` 来表示该成员可递归。
例如,下面的例子中,枚举类型存储了简单的算术表达式:
```swift
enum ArithmeticExpression {
case number(Int)
indirect case addition(ArithmeticExpression, ArithmeticExpression)
indirect case multiplication(ArithmeticExpression, ArithmeticExpression)
}
```
你也可以在枚举类型开头加上 `indirect` 关键字来表明它的所有成员都是可递归的:
```swift
indirect enum ArithmeticExpression {
case number(Int)
case addition(ArithmeticExpression, ArithmeticExpression)
case multiplication(ArithmeticExpression, ArithmeticExpression)
}
```
上面定义的枚举类型可以存储三种算术表达式:纯数字、两个表达式相加、两个表达式相乘。枚举成员 `addition` 和 `multiplication` 的关联值也是算术表达式——这些关联值使得嵌套表达式成为可能。例如,表达式 `(5 + 4) * 2`,乘号右边是一个数字,左边则是另一个表达式。因为数据是嵌套的,因而用来存储数据的枚举类型也需要支持这种嵌套——这意味着枚举类型需要支持递归。下面的代码展示了使用 `ArithmeticExpression` 这个递归枚举创建表达式 `(5 + 4) * 2`
```swift
let five = ArithmeticExpression.number(5)
let four = ArithmeticExpression.number(4)
let sum = ArithmeticExpression.addition(five, four)
let product = ArithmeticExpression.multiplication(sum, ArithmeticExpression.number(2))
```
要操作具有递归性质的数据结构,使用递归函数是一种直截了当的方式。例如,下面是一个对算术表达式求值的函数:
```swift
func evaluate(_ expression: ArithmeticExpression) -> Int {
switch expression {
case let .number(value):
return value
case let .addition(left, right):
return evaluate(left) + evaluate(right)
case let .multiplication(left, right):
return evaluate(left) * evaluate(right)
}
}
print(evaluate(product))
// 打印“18”
```
该函数如果遇到纯数字,就直接返回该数字的值。如果遇到的是加法或乘法运算,则分别计算左边表达式和右边表达式的值,然后相加或相乘。
- 1.关于 Swift
- 2.Swift 初见
- 2-1基础部分
- 2-2基本运算符
- 2-3字符串和字符
- 2-4集合类型
- 2-5控制流
- 2-6函数
- 2-7闭包
- 2-8枚举
- 2-9类和结构体
- 2-10属性
- 2-11方法
- 2-12下标
- 2-13继承
- 2-14构造过程
- 2-15析构过程
- 2-16可选链
- 2-17错误处理
- 2-18类型转换
- 2-19嵌套类型
- 2-20扩展
- 2-21协议
- 2-22泛型
- 2-23不透明类型
- 2-24自动引用计数
- 2-25内存安全
- 2-26访问控制
- 2-27高级运算符
- 3-1关于语言参考
- 3-2词法结构
- 3-3类型
- 3-4表达式
- 3-5语句
- 3-6声明
- 3-7特性
- 3-8模式
- 3-9泛型参数
- 4语法总结