## CMDecodingState
VCMDecodingState 是用于判断nalu是否可以连续解码,判断的依据因不同编码格式而不同。它支持了三种编码格式:VP8,VP9,H264,看下它定义的几个成员变量
~~~
uint16_t sequence_num_;
uint32_t time_stamp_;
int picture_id_;
int temporal_id_;
int tl0_pic_id_;
bool full_sync_; // Sync flag when temporal layers are used.
~~~
picture\_id,temporal\_id,tl0\_pic\_id是携带在vp8,vp9中的信息,用于标识Nalu间的关系及是否可连续解码。而H264并没有携带这些信息,在成员函数`ContinuousFrame`中,可以看到对H264的处理逻辑。在这篇文章里也只关心H264的处理。
### 成员函数 ContinuousFrame
~~~
bool VCMDecodingState::ContinuousFrame(const VCMFrameBuffer* frame) const {
// Check continuity based on the following hierarchy:
// - Temporal layers (stop here if out of sync).
// - Picture Id when available.
// - Sequence numbers.
// Return true when in initial state.
// Note that when a method is not applicable it will return false.
assert(frame != NULL);
// A key frame is always considered continuous as it doesn't refer to any
// frames and therefore won't introduce any errors even if prior frames are
// missing.
if (frame->FrameType() == VideoFrameType::kVideoFrameKey &&
HaveSpsAndPps(frame->GetNaluInfos())) {
return true;
}
// When in the initial state we always require a key frame to start decoding.
if (in_initial_state_)
return false;
if (ContinuousLayer(frame->TemporalId(), frame->Tl0PicId()))
return true;
// tl0picId is either not used, or should remain unchanged.
if (frame->Tl0PicId() != tl0_pic_id_)
return false;
// Base layers are not continuous or temporal layers are inactive.
// In the presence of temporal layers, check for Picture ID/sequence number
// continuity if sync can be restored by this frame.
if (!full_sync_ && !frame->LayerSync())
return false;
if (UsingPictureId(frame)) {
if (UsingFlexibleMode(frame)) {
return ContinuousFrameRefs(frame);
} else {
return ContinuousPictureId(frame->PictureId());
}
} else {
return ContinuousSeqNum(static_cast<uint16_t>(frame->GetLowSeqNum())) &&
HaveSpsAndPps(frame->GetNaluInfos());
}
}
~~~
对H264的nalu,pic\_id值为kNoPictureId,Tl0picId的值为kNoTl0PicIdx,TemporalId的值为kNoTemporaId。所以对pictureid或temporalid的判断,都是可以忽略。那么对H264的执行逻辑是这段语句
~~~
return ContinuousSeqNum(static_cast<uint16_t>(frame->GetLowSeqNum())) &&
HaveSpsAndPps(frame->GetNaluInfos());
~~~
是通过seqnum,是否有sps,pps来判断帧间的解码连续性。
**如果两个nalu是连续的则后一个的nalu的中最小的seqnum是等于前一个nalu中最大的seqnum加1的,成员函数ContinuousSeqNum就是这个判断逻辑。**
### 成员函数HaveSpsAndPps
它做了两件事:
1. 判断nalu是否是同一个GOP
2. 判断GOP中是否有SPS和PPS
~~~
bool VCMDecodingState::HaveSpsAndPps(const std::vector<NaluInfo>& nalus) const {
std::set<int> new_sps;
std::map<int, int> new_pps;
for (const NaluInfo& nalu : nalus) {
// Check if this nalu actually contains sps/pps information or dependencies.
if (nalu.sps_id == -1 && nalu.pps_id == -1)
continue;
switch (nalu.type) {
case H264::NaluType::kPps:
if (nalu.pps_id < 0) {
RTC_LOG(LS_WARNING) << "Received pps without pps id.";
} else if (nalu.sps_id < 0) {
RTC_LOG(LS_WARNING) << "Received pps without sps id.";
} else {
new_pps[nalu.pps_id] = nalu.sps_id;
}
break;
case H264::NaluType::kSps:
if (nalu.sps_id < 0) {
RTC_LOG(LS_WARNING) << "Received sps without sps id.";
} else {
new_sps.insert(nalu.sps_id);
}
break;
default: {
int needed_sps = -1;
auto pps_it = new_pps.find(nalu.pps_id);
if (pps_it != new_pps.end()) {
needed_sps = pps_it->second;
} else {
auto pps_it2 = received_pps_.find(nalu.pps_id);
if (pps_it2 == received_pps_.end()) {
return false;
}
needed_sps = pps_it2->second;
}
if (new_sps.find(needed_sps) == new_sps.end() &&
received_sps_.find(needed_sps) == received_sps_.end()) {
return false;
}
break;
}
}
}
return true;
}
~~~
是否是同一个GOP的判断是根据sps\_id和pps\_id:
1. **pps\_id为 pic\_parameter\_set\_id**,表示当前pps的id,某个pps在码流中会被相应的slice引用。slice引用pps的方式就是在slice header中保存pps的 id。
2. **sps\_id为 seq\_parameter\_set\_id**,表示当前sps的id。被pps引用,在pps中带有所引用的sps的id。
**那么在一个GOP内的nalu,各slice中pps id应该是相同的。pps中的sps id与sps中的 id是相同的。如果两个nalu的seqnum是连续的,且属于同一个GOP,且存在SPS,PPS,则认为帧间是可连续解码的。**
### VCMJitterBuffer中对nalu是否可连续解码的处理
知道了H264判断nalu间是否可连续解码的依据,再回过头来看看VMCJitterBuffer的**InsertPacket**方法关于nalu间是否可连续解码的逻辑,涉及到三个成员函数:**FindAndInsertContinuousFramesWithState,FindAndInsertContinuousFrames,IsContinuous**
* **FindAndInsertContinuousFramesWithState**成员函数,它的作用就是根据最近一次可解码nalu的信息(记录在VCMDecodingState中)在incomplete framelist中寻找同属一个GOP内的nalu。从incomplete framelis中删除,插入到decodable framelist中
~~~
void VCMJitterBuffer::FindAndInsertContinuousFramesWithState(
const VCMDecodingState& original_decoded_state)
{//寻找同一个GOP内的Nalu
// Copy original_decoded_state so we can move the state forward with each
// decodable frame we find.
VCMDecodingState decoding_state;
decoding_state.CopyFrom(original_decoded_state);
// When temporal layers are available, we search for a complete or decodable
// frame until we hit one of the following:
// 1. Continuous base or sync layer.
// 2. The end of the list was reached.
//对H264可以忽略temporal的处理逻辑
for (FrameList::iterator it = incomplete_frames_.begin();it != incomplete_frames_.end();)
{
VCMFrameBuffer* frame = it->second;
if (IsNewerTimestamp(original_decoded_state.time_stamp(),frame->Timestamp()))
{
++it;
continue;
}
if (IsContinuousInState(*frame, decoding_state))
{
decodable_frames_.InsertFrame(frame);
incomplete_frames_.erase(it++);
decoding_state.SetState(frame);
} else if (frame->TemporalId() <= 0) {
break;
} else {
++it;
}
}
}
~~~
* 成员函数**FindAndInsertContinuousFrames**,是通过一个nalu在incomplete framelist中寻找同属一个GOP内的nalu
~~~
void VCMJitterBuffer::FindAndInsertContinuousFrames(
const VCMFrameBuffer& new_frame) {
VCMDecodingState decoding_state;
decoding_state.CopyFrom(last_decoded_state_);
decoding_state.SetState(&new_frame);
FindAndInsertContinuousFramesWithState(decoding_state);
}
~~~
* 成员函数**IsContinuous**是用于判断nalu是否可以连续解码
~~~
bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const
{
if (IsContinuousInState(frame, last_decoded_state_))
{//与last_decoded_state_代表的上一个nalu是可连续解码的
return true;
}
//还有一种情况:该frame与last_decoded_state_代表的nalu是在seqnum上是不连续,
//但是属于同一个GOP内的,所以要遍历decodable framelist进行判断
VCMDecodingState decoding_state;
decoding_state.CopyFrom(last_decoded_state_);
for (FrameList::const_iterator it = decodable_frames_.begin();
it != decodable_frames_.end(); ++it) {
VCMFrameBuffer* decodable_frame = it->second;
if (IsNewerTimestamp(decodable_frame->Timestamp(), frame.Timestamp())) {
break;
}
decoding_state.SetState(decodable_frame);
if (IsContinuousInState(frame, decoding_state)) {
return true;
}
}
return false;
}
~~~
判断nalu是否可连续解码,需要考虑两种情况:
1. 该nalu与last\_decoded\_state\_代表的上一个nalu在同一个GOP内,且seqnum是连续的。
2. 属于同一个GOP,但是seqnum不连续,此时应该去遍历decodable framelist,寻找在同一个GOP内,seqnum连续的nalu。
对VCMJitterBuffer的插入操作,就时涉及到对rtp包的处理和对nalu,GOP的处理。也通过这两篇文章讲的比较清楚了。后面将会关注去nalu的处理。
- 序言
- 编解码
- H264
- HEVC码流解析
- H264编码原理
- 多媒体封装
- MP4
- 学好 MP4,让直播更给力
- AAC
- FLV
- 流媒体协议
- RTSP
- RTCP
- RTP
- H265 RTP封包笔记
- SDP
- RTMP
- RTMP URL
- rtmp url基础
- webrtc
- 编译
- 最简单的编译webrtc方案
- Webrtc音视频会议之Webrtc“不求甚解”
- Webrtc音视频会议之Mesh/MCU/SFU三种架构
- 音频传输之Jitter Buffer设计与实现
- Janus
- Webrtc音视频会议之Janus编译
- Webrtc音视频会议之Janus源码架构设计
- webrtc服务器-janus房间管理
- 源码分析
- WebRTC视频JitterBuffer详解
- 走读Webrtc 中的视频JitterBuffer(一)
- 走读webrtc 中的视频JitterBuffer(二)
- webrtc视频帧率控制算法机制
- 目标码率丢帧-1
- 目标帧率丢帧-2
- 29 如何使用Medooze 实现多方视频会议
- FFmpeg
- FFmpeg编译
- Window10下编译最新版FFmpeg的方法步骤
- FFMPEG静态库编译
- ffmpeg实现画中画
- FFmpeg推流器
- ffmpeg-aac
- OpenCV
- OpenCV学习笔记——视频的边缘检测
- 图像特征点匹配(视频质量诊断、画面抖动检测)
- 图像质量诊断