## 1. 正排(doc value)与倒排
> 搜索的时候,要依靠倒排索引;排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values
> 在建立索引的时候,一方面会建立倒排索引,以供搜索用;一方面会建立正排索引,也就是doc values,以供排序,聚合,过滤等操作使用
> 正排索引:
> 1. 如果你的某个field设置为不分词,那么在建立索引的时候(index-time),就会自动生成doc value
> 2. doc value(正排索引):
> 是被保存在磁盘上的,此时如果内存足够,os会自动将其缓存在内存中,性能还是会很高;如果内存不足够,os会将其写入磁盘上
~~~
doc1: hello world you and me
doc2: hi, world, how are you
~~~
> 倒排索引:数据-文档的二维矩阵
~~~
word doc1 doc2
hello *
world * *
you * *
and *
me *
hi *
how *
are *
~~~
> 例如搜索hello you,搜索语句会按照index中对应的field的分词器进行分词
> hello you --> hello, you
~~~
hello --> doc1
you --> doc1,doc2
~~~
~~~
doc1: hello world you and me
doc2: hi, world, how are you
~~~
> 正排索引
~~~
doc1: { "name": "jack", "age": 27 }
doc2: { "name": "tom", "age": 30 }
~~~
> 文档-数据的二维矩阵
~~~
document name age
doc1 jack 27
doc2 tom 30
~~~
> 例如通过age排序,方便排序
>
## 2. 对于分词的field进行聚合
* 正常情况下,是不可以对分词的field进行聚合的
~~~
PUT myindex/test/1
{
"name":"dailin"
}
~~~
聚合测试
~~~
GET myindex/_search
{
"size": 0,
"aggs": {
"groupby_name": {
"terms": {
"field": "name"
}
}
}
}
~~~
报错
~~~
"reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [name] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
~~~
Fielddata默认是关闭的,必须要打开fielddata,然后将正排索引数据加载到内存中,才可以对分词的field执行聚合操作,而且会消耗很大的内存。
如果对分词的field进行聚合,有以下几种方法
1. 对应field的Fielddata设置成true
首先设置mapping
~~~
POST myindex/_mapping/test
{
"properties": {
"name":{
"type": "text",
"fielddata": true
}
}
}
~~~
再次聚合
~~~
GET myindex/_search
{
"size": 0,
"aggs": {
"groupby_name": {
"terms": {
"field": "name"
}
}
}
}
~~~
成功
~~~
"aggregations": {
"groupby_name": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "dailin",
"doc_count": 1
}
]
}
}
}
~~~
2. 使用分词field的keyword子field
5.X版本以后,es默认会为每个textfield生成一个keyword(不分词),我们可以利用这个field聚合
* 查看mapping
`GET myindex/_mapping`
~~~
"name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword", # 生成一个不分词的子field
"ignore_above": 256
}
}
~~~
* 聚合测试
~~~
GET myindex/_search
{
"size": 0,
"aggs": {
"groupby_name": {
"terms": {
"field": "name.keyword"
}
}
}
}
~~~
同样得到一样的结果
>1. 如果一定要对分词的field执行聚合,那么必须将fielddata=true,然后es就会在执行聚合操作的时候,现场将field对应的数据,建立一份fielddata正排索引,fielddata正排索引的结构跟doc value是类似的,但是只会讲fielddata正排索引加载到内存中来,然后基于内存中的fielddata正排索引执行分词field的聚合操作
>2. fielddata加载到内存的过程是lazy加载的,对一个analzyed field执行聚合时,才会加载,而且是field-level加载的一个index的一个field,所有doc都会被加载,而不是少数doc不是index-time创建,是query-time创建
> 3. 监控fielddata内存使用
~~~
# 各个分片的fiedata内存占用情况
GET /_stats/fielddata?fields=*
# 各个node的fielddata的内存占用情况
GET /_nodes/stats/indices/fielddata?fields=*
GET /_nodes/stats/indices/fielddata?level=indices&fields=*
~~~
> 4. circuit breaker(fielddata内存使用控制)
~~~
如果一次query load的feilddata超过总内存,就会oom --> 内存溢出
circuit breaker会估算query要加载的fielddata大小,如果超出总内存,就短路,query直接失败
indices.breaker.fielddata.limit:fielddata的内存限制,默认60%
indices.breaker.request.limit:执行聚合的内存限制,默认40%
indices.breaker.total.limit:综合上面两个,限制在70%以内
~~~
### fielddata预加载
如果真的要对分词的field执行聚合,那么每次都在query-time现场生产fielddata并加载到内存中来,速度可能会比较慢
我们是不是可以预先生成加载fielddata到内存中来???
1. fielddata预加载
~~~
POST /test_index/_mapping/test_type
{
"properties": {
"test_field": {
"type": "string",
"fielddata": {
"loading" : "eager"
}
}
}
}
~~~
query-time的fielddata生成和加载到内存,变为index-time,建立倒排索引的时候,会同步生成fielddata并且加载到内存中来,这样的话,对分词field的聚合性能当然会大幅度增强
2. 序号标记预加载
global ordinal原理解释
~~~
doc1: status1
doc2: status2
doc3: status2
doc4: status1
~~~
有很多重复值的情况,会进行global ordinal标记
~~~
status1 --> 0
status2 --> 1
doc1: 0
doc2: 1
doc3: 1
doc4: 0
~~~
建立的fielddata也会是这个样子的,这样的好处就是减少重复字符串的出现的次数,减少内存的消耗
~~~
POST /test_index/_mapping/test_type
{
"properties": {
"test_field": {
"type": "string",
"fielddata": {
"loading" : "eager_global_ordinals"
}
}
}
}
~~~
- Docker
- 什么是docker
- Docker安装、组件启动
- docker网络
- docker命令
- docker swarm
- dockerfile
- mesos
- 运维
- Linux
- Linux基础
- Linux常用命令_1
- Linux常用命令_2
- ip命令
- 什么是Linux
- SELinux
- Linux GCC编译警告:Clock skew detected. 错误解决办法
- 文件描述符
- find
- 资源统计
- LVM
- Linux相关配置
- 服务自启动
- 服务器安全
- 字符集
- shell脚本
- shell命令
- 实用脚本
- shell 数组
- 循环与判断
- 系统级别进程开启和停止
- 函数
- java调用shell脚本
- 发送邮件
- Linux网络配置
- Ubuntu
- Ubuntu发送邮件
- 更换apt-get源
- centos
- 防火墙
- 虚拟机下配置网络
- yum重新安装
- 安装mysql5.7
- 配置本地yum源
- 安装telnet
- 忘记root密码
- rsync+ crontab
- Zabbix
- Zabbix监控
- Zabbix安装
- 自动报警
- 自动发现主机
- 监控MySQL
- 安装PHP常见错误
- 基于nginx安装zabbix
- 监控Tomcat
- 监控redis
- web监控
- 监控进程和端口号
- zabbix自定义监控
- 触发器函数
- zabbix监控mysql主从同步状态
- Jenkins
- 安装Jenkins
- jenkins+svn+maven
- jenkins执行shell脚本
- 参数化构建
- maven区分环境打包
- jenkins使用注意事项
- nginx
- nginx认证功能
- ubuntu下编译安装Nginx
- 编译安装
- Nginx搭建本地yum源
- 文件共享
- Haproxy
- 初识Haproxy
- haproxy安装
- haproxy配置
- virtualbox
- virtualbox 复制新的虚拟机
- ubuntu下vitrualbox安装redhat
- centos配置双网卡
- 配置存储
- Windows
- Windows安装curl
- VMware vSphere
- 磁盘管理
- 增加磁盘
- gitlab
- 安装
- tomcat
- Squid
- bigdata
- FastDFS
- FastFDS基础
- FastFDS安装及简单实用
- api介绍
- 数据存储
- FastDFS防盗链
- python脚本
- ELK
- logstash
- 安装使用
- kibana
- 安准配置
- elasticsearch
- elasticsearch基础_1
- elasticsearch基础_2
- 安装
- 操作
- java api
- 中文分词器
- term vector
- 并发控制
- 对text字段排序
- 倒排和正排索引
- 自定义分词器
- 自定义dynamic策略
- 进阶练习
- 共享锁和排它锁
- nested object
- 父子关系模型
- 高亮
- 搜索提示
- Redis
- redis部署
- redis基础
- redis运维
- redis-cluster的使用
- redis哨兵
- redis脚本备份还原
- rabbitMQ
- rabbitMQ安装使用
- rpc
- RocketMQ
- 架构概念
- 安装
- 实例
- 好文引用
- 知乎
- ACK
- postgresql
- 存储过程
- 编程语言
- 计算机网络
- 基础_01
- tcp/ip
- http转https
- Let's Encrypt免费ssl证书(基于haproxy负载)
- what's the http?
- 网关
- 网络IO
- http
- 无状态网络协议
- Python
- python基础
- 基础数据类型
- String
- List
- 遍历
- Python基础_01
- python基础_02
- python基础03
- python基础_04
- python基础_05
- 函数
- 网络编程
- 系统编程
- 类
- Python正则表达式
- pymysql
- java调用python脚本
- python操作fastdfs
- 模块导入和sys.path
- 编码
- 安装pip
- python进阶
- python之setup.py构建工具
- 模块动态导入
- 内置函数
- 内置变量
- path
- python模块
- 内置模块_01
- 内置模块_02
- log模块
- collections
- Twisted
- Twisted基础
- 异步编程初探与reactor模式
- yield-inlineCallbacks
- 系统编程
- 爬虫
- urllib
- xpath
- scrapy
- 爬虫基础
- 爬虫种类
- 入门基础
- Rules
- 反反爬虫策略
- 模拟登陆
- problem
- 分布式爬虫
- 快代理整站爬取
- 与es整合
- 爬取APP数据
- 爬虫部署
- collection for ban of web
- crawlstyle
- API
- 多次请求
- 向调度器发送请求
- 源码学习
- LinkExtractor源码分析
- 构建工具-setup.py
- selenium
- 基础01
- 与scrapy整合
- Django
- Django开发入门
- Django与MySQL
- java
- 设计模式
- 单例模式
- 工厂模式
- java基础
- java位移
- java反射
- base64
- java内部类
- java高级
- 多线程
- springmvc-restful
- pfx数字证书
- 生成二维码
- 项目中使用log4j
- 自定义注解
- java发送post请求
- Date时间操作
- spring
- 基础
- spring事务控制
- springMVC
- 注解
- 参数绑定
- springmvc+spring+mybatis+dubbo
- MVC模型
- SpringBoot
- java配置入门
- SpringBoot基础入门
- SpringBoot web
- 整合
- SpringBoot注解
- shiro权限控制
- CommandLineRunner
- mybatis
- 静态资源
- SSM整合
- Aware
- Spring API使用
- Aware接口
- mybatis
- 入门
- mybatis属性自动映射、扫描
- 问题
- @Param 注解在Mybatis中的使用 以及传递参数的三种方式
- mybatis-SQL
- 逆向生成dao、model层代码
- 反向工程中Example的使用
- 自增id回显
- SqlSessionDaoSupport
- invalid bound statement(not found)
- 脉络
- beetl
- beetl是什么
- 与SpringBoot整合
- shiro
- 什么是shiro
- springboot+shrio+mybatis
- 拦截url
- 枚举
- 图片操作
- restful
- java项目中日志处理
- JSON
- 文件工具类
- KeyTool生成证书
- 兼容性问题
- 开发规范
- 工具类开发规范
- 压缩图片
- 异常处理
- web
- JavaScript
- 基础语法
- 创建对象
- BOM
- window对象
- DOM
- 闭包
- form提交-文件上传
- td中内容过长
- 问题1
- js高级
- js文件操作
- 函数_01
- session
- jQuery
- 函数01
- data()
- siblings
- index()与eq()
- select2
- 动态样式
- bootstrap
- 表单验证
- 表格
- MUI
- HTML
- iframe
- label标签
- 规范编程
- layer
- sss
- 微信小程序
- 基础知识
- 实践
- 自定义组件
- 修改自定义组件的样式
- 基础概念
- appid
- 跳转
- 小程序发送ajax
- 微信小程序上下拉刷新
- if
- 工具
- idea
- Git
- maven
- svn
- Netty
- 基础概念
- Handler
- SimpleChannelInboundHandler 与 ChannelInboundHandler
- 网络编程
- 网络I/O
- database
- oracle
- 游标
- PLSQL Developer
- mysql
- MySQL基准测试
- mysql备份
- mysql主从不同步
- mysql安装
- mysql函数大全
- SQL语句
- 修改配置
- 关键字
- 主从搭建
- centos下用rpm包安装mysql
- 常用sql
- information_scheme数据库
- 值得学的博客
- mysql学习
- 运维
- mysql权限
- 配置信息
- 好文mark
- jsp
- jsp EL表达式
- C
- test