企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
## 6.5. 示例: Bit數組 Go語言里的集合一般會用map[T]bool這種形式來表示,T代表元素類型。集合用map類型來表示雖然非常靈活,但我們可以以一種更好的形式來表示它。例如在數據流分析領域,集合元素通常是一個非負整數,集合會包含很多元素,併且集合會經常進行併集、交集操作,這種情況下,bit數組會比map表現更加理想。(譯註:這里再補充一個例子,比如我們執行一個http下載任務,把文件按照16kb一塊劃分爲很多塊,需要有一個全局變量來標識哪些塊下載完成了,這種時候也需要用到bit數組) 一個bit數組通常會用一個無符號數或者稱之爲“字”的slice或者來表示,每一個元素的每一位都表示集合里的一個值。當集合的第i位被設置時,我們才説這個集合包含元素i。下面的這個程序展示了一個簡單的bit數組類型,併且實現了三個函數來對這個bit數組來進行操作: ```go gopl.io/ch6/intset // An IntSet is a set of small non-negative integers. // Its zero value represents the empty set. type IntSet struct { words []uint64 } // Has reports whether the set contains the non-negative value x. func (s *IntSet) Has(x int) bool { word, bit := x/64, uint(x%64) return word < len(s.words) && s.words[word]&(1<<bit) != 0 } // Add adds the non-negative value x to the set. func (s *IntSet) Add(x int) { word, bit := x/64, uint(x%64) for word >= len(s.words) { s.words = append(s.words, 0) } s.words[word] |= 1 << bit } // UnionWith sets s to the union of s and t. func (s *IntSet) UnionWith(t *IntSet) { for i, tword := range t.words { if i < len(s.words) { s.words[i] |= tword } else { s.words = append(s.words, tword) } } } ``` 因爲每一個字都有64個二進製位,所以爲了定位x的bit位,我們用了x/64的商作爲字的下標,併且用x%64得到的值作爲這個字內的bit的所在位置。UnionWith這個方法里用到了bit位的“或”邏輯操作符號|來一次完成64個元素的或計算。(在練習6.5中我們還會程序用到這個64位字的例子。) 當前這個實現還缺少了很多必要的特性,我們把其中一些作爲練習題列在本小節之後。但是有一個方法如果缺失的話我們的bit數組可能會比較難混:將IntSet作爲一個字符串來打印。這里我們來實現它,讓我們來給上面的例子添加一個String方法,類似2.5節中做的那樣: ```go // String returns the set as a string of the form "{1 2 3}". func (s *IntSet) String() string { var buf bytes.Buffer buf.WriteByte('{') for i, word := range s.words { if word == 0 { continue } for j := 0; j < 64; j++ { if word&(1<<uint(j)) != 0 { if buf.Len() > len("{") { buf.WriteByte('}') } fmt.Fprintf(&buf, "%d", 64*i+j)"}")}} } } } buf.WriteByte('}') return buf.String() } ``` 這里留意一下String方法,是不是和3.5.4節中的intsToString方法很相似;bytes.Buffer在String方法里經常這麽用。當你爲一個複雜的類型定義了一個String方法時,fmt包就會特殊對待這種類型的值,這樣可以讓這些類型在打印的時候看起來更加友好,而不是直接打印其原始的值。fmt會直接調用用戶定義的String方法。這種機製依賴於接口和類型斷言,在第7章中我們會詳細介紹。 現在我們就可以在實戰中直接用上面定義好的IntSet了: ```go var x, y IntSet x.Add(1) x.Add(144) x.Add(9) fmt.Println(x.String()) // "{1 9 144}" y.Add(9) y.Add(42) fmt.Println(y.String()) // "{9 42}" x.UnionWith(&y) fmt.Println(x.String()) // "{1 9 42 144}" fmt.Println(x.Has(9), x.Has(123)) // "true false" ``` 這里要註意:我們聲明的String和Has兩個方法都是以指針類型*IntSet來作爲接收器的,但實際上對於這兩個類型來説,把接收器聲明爲指針類型也沒什麽必要。不過另外兩個函數就不是這樣了,因爲另外兩個函數操作的是s.words對象,如果你不把接收器聲明爲指針對象,那麽實際操作的是拷貝對象,而不是原來的那個對象。因此,因爲我們的String方法定義在IntSet指針上,所以當我們的變量是IntSet類型而不是IntSet指針時,可能會有下面這樣讓人意外的情況: ```go fmt.Println(&x) // "{1 9 42 144}" fmt.Println(x.String()) // "{1 9 42 144}" fmt.Println(x) // "{[4398046511618 0 65536]}" ``` 在第一個Println中,我們打印一個*IntSet的指針,這個類型的指針確實有自定義的String方法。第二Println,我們直接調用了x變量的String()方法;這種情況下編譯器會隱式地在x前插入&操作符,這樣相當遠我們還是調用的IntSet指針的String方法。在第三個Println中,因爲IntSet類型沒有String方法,所以Println方法會直接以原始的方式理解併打印。所以在這種情況下&符號是不能忘的。在我們這種場景下,你把String方法綁定到IntSet對象上,而不是IntSet指針上可能會更合適一些,不過這也需要具體問題具體分析。 練習6.1: 爲bit數組實現下面這些方法 ```go func (*IntSet) Len() int // return the number of elements func (*IntSet) Remove(x int) // remove x from the set func (*IntSet) Clear() // remove all elements from the set func (*IntSet) Copy() *IntSet // return a copy of the set ``` 練習6.2: 定義一個變參方法(*IntSet).AddAll(...int),這個方法可以爲一組IntSet值求和,比如s.AddAll(1,2,3)。 練習6.3: (*IntSet).UnionWith會用|操作符計算兩個集合的交集,我們再爲IntSet實現另外的幾個函數IntersectWith(交集:元素在A集合B集合均出現),DifferenceWith(差集:元素出現在A集合,未出現在B集合),SymmetricDifference(併差集:元素出現在A但沒有出現在B,或者出現在B沒有出現在A)。 練習6.4: 實現一個Elems方法,返迴集合中的所有元素,用於做一些range之類的遍歷操作。 練習6.5: 我們這章定義的IntSet里的每個字都是用的uint64類型,但是64位的數值可能在32位的平台上不高效。脩改程序,使其使用uint類型,這種類型對於32位平台來説更合適。當然了,這里我們可以不用簡單粗暴地除64,可以定義一個常量來決定是用32還是64,這里你可能會用到平台的自動判斷的一個智能表達式:32 << (^uint(0) >> 63)