## 标准化
> 归一化是将单个样本缩放为具有单位范数的过程。
## L2 norm
[http://mathworld.wolfram.com/L2-Norm.html](http://mathworld.wolfram.com/L2-Norm.html)
### 例:
```
use Phpml\Preprocessing\Normalizer;
$samples = [
[1, -1, 2],
[2, 0, 0],
[0, 1, -1],
];
$normalizer = new Normalizer();
$normalizer->preprocess($samples);
/*
$samples = [
[0.4, -0.4, 0.81],
[1.0, 0.0, 0.0],
[0.0, 0.7, -0.7],
];
*/
```
*****
## L1 norm
[http://mathworld.wolfram.com/L1-Norm.html](http://mathworld.wolfram.com/L1-Norm.html)
### 例:
```
use Phpml\Preprocessing\Normalizer;
$samples = [
[1, -1, 2],
[2, 0, 0],
[0, 1, -1],
];
$normalizer = new Normalizer(Normalizer::NORM_L1);
$normalizer->preprocess($samples);
/*
$samples = [
[0.25, -0.25, 0.5],
[1.0, 0.0, 0.0],
[0.0, 0.5, -0.5],
];
*/
```
- 基本介绍
- 关联规则学习
- 分类
- SVC
- k近邻算法
- NaiveBayes
- 回归
- 最小二乘法
- SVR
- 聚类
- k均值聚类算法
- DBSCAN聚类算法
- 公
- 准确性
- 混乱矩阵
- 分类报告
- 工作流程
- 神经网络
- 交叉验证
- 随机拆分
- 分层随机分裂
- 特征选择
- 方差阈值
- 特征选择
- 预处理
- 标准化
- 缺失值补全
- 特征提取(自然语言)
- 令牌计数矢量化器(文本处理)
- Tf-idf转换
- 数据集
- ArrayDataset
- CsvDataset
- FilesDataset
- SvmDataset
- MnistDataset
- 准备使用数据集
- Iris Dataset
- Wine Dataset
- Glass Dataset
- 模型管理
- 数学
- 距离
- 矩阵
- 组
- 统计