## Persistency
> 您可以保存经过培训的模型以备将来使通过将序列化估算器保存和恢复到文件中实现的请求之间的持久性。
### 例
```
use Phpml\Classification\KNearestNeighbors;
use Phpml\ModelManager;
$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
$labels = ['a', 'a', 'a', 'b', 'b', 'b'];
$classifier = new KNearestNeighbors();
$classifier->train($samples, $labels);
$filepath = '/path/to/store/the/model';
$modelManager = new ModelManager();
$modelManager->saveToFile($classifier, $filepath);
$restoredClassifier = $modelManager->restoreFromFile($filepath);
$restoredClassifier->predict([3, 2]);
// return 'b'
```
- 基本介绍
- 关联规则学习
- 分类
- SVC
- k近邻算法
- NaiveBayes
- 回归
- 最小二乘法
- SVR
- 聚类
- k均值聚类算法
- DBSCAN聚类算法
- 公
- 准确性
- 混乱矩阵
- 分类报告
- 工作流程
- 神经网络
- 交叉验证
- 随机拆分
- 分层随机分裂
- 特征选择
- 方差阈值
- 特征选择
- 预处理
- 标准化
- 缺失值补全
- 特征提取(自然语言)
- 令牌计数矢量化器(文本处理)
- Tf-idf转换
- 数据集
- ArrayDataset
- CsvDataset
- FilesDataset
- SvmDataset
- MnistDataset
- 准备使用数据集
- Iris Dataset
- Wine Dataset
- Glass Dataset
- 模型管理
- 数学
- 距离
- 矩阵
- 组
- 统计