多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
实时数仓主要是为了解决传统数仓数据时效性低的问题,实时数仓通常会用在实时的OLAP分析、实时的数据看板、业务指标实时监控等场景。虽然关于实时数仓的架构及技术选型与传统的离线数仓会存在差异,但是关于数仓建设的基本方法论是一致的。本文会分享基于Flink SQL从0到1搭建一个实时数仓的demo,涉及数据采集、存储、计算、可视化整个处理流程。通过本文你可以了解到: * 实时数仓的基本架构 * 实时数仓的数据处理流程 * Flink1.11的SQL新特性 * Flink1.11存在的bug * 完整的操作案例 > 古人学问无遗力,少壮工夫老始成。 > > 纸上得来终觉浅,绝知此事要躬行。 ## 案例简介 本文会以电商业务为例,展示实时数仓的数据处理流程。另外,本文旨在说明实时数仓的构建流程,所以不会涉及太复杂的数据计算。为了保证案例的可操作性和完整性,本文会给出详细的操作步骤。为了方便演示,本文的所有操作都是在Flink SQL Cli中完成的。 ## 架构设计 具体的架构设计如图所示:首先通过canal解析MySQL的binlog日志,将数据存储在Kafka中。然后使用Flink SQL对原始数据进行清洗关联,并将处理之后的明细宽表写入kafka中。维表数据存储在MySQL中,通过Flink SQL对明细宽表与维表进行JOIN,将聚合后的数据写入MySQL,最后通过FineBI进行可视化展示。 ![](https://img.kancloud.cn/53/b5/53b51c953830dc701cc66eac6a5c3d69_1634x568.jpg) image ## 业务数据准备 * 订单表(order\_info) ~~~sql CREATE TABLE `order_info` ( `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '编号', `consignee` varchar(100) DEFAULT NULL COMMENT '收货人', `consignee_tel` varchar(20) DEFAULT NULL COMMENT '收件人电话', `total_amount` decimal(10,2) DEFAULT NULL COMMENT '总金额', `order_status` varchar(20) DEFAULT NULL COMMENT '订单状态', `user_id` bigint(20) DEFAULT NULL COMMENT '用户id', `payment_way` varchar(20) DEFAULT NULL COMMENT '付款方式', `delivery_address` varchar(1000) DEFAULT NULL COMMENT '送货地址', `order_comment` varchar(200) DEFAULT NULL COMMENT '订单备注', `out_trade_no` varchar(50) DEFAULT NULL COMMENT '订单交易编号(第三方支付用)', `trade_body` varchar(200) DEFAULT NULL COMMENT '订单描述(第三方支付用)', `create_time` datetime DEFAULT NULL COMMENT '创建时间', `operate_time` datetime DEFAULT NULL COMMENT '操作时间', `expire_time` datetime DEFAULT NULL COMMENT '失效时间', `tracking_no` varchar(100) DEFAULT NULL COMMENT '物流单编号', `parent_order_id` bigint(20) DEFAULT NULL COMMENT '父订单编号', `img_url` varchar(200) DEFAULT NULL COMMENT '图片路径', `province_id` int(20) DEFAULT NULL COMMENT '地区', PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT='订单表'; ~~~ * 订单详情表(order\_detail) ~~~sql CREATE TABLE `order_detail` ( `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '编号', `order_id` bigint(20) DEFAULT NULL COMMENT '订单编号', `sku_id` bigint(20) DEFAULT NULL COMMENT 'sku_id', `sku_name` varchar(200) DEFAULT NULL COMMENT 'sku名称(冗余)', `img_url` varchar(200) DEFAULT NULL COMMENT '图片名称(冗余)', `order_price` decimal(10,2) DEFAULT NULL COMMENT '购买价格(下单时sku价格)', `sku_num` varchar(200) DEFAULT NULL COMMENT '购买个数', `create_time` datetime DEFAULT NULL COMMENT '创建时间', PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT='订单详情表'; ~~~ * 商品表(sku\_info) ~~~sql CREATE TABLE `sku_info` ( `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'skuid(itemID)', `spu_id` bigint(20) DEFAULT NULL COMMENT 'spuid', `price` decimal(10,0) DEFAULT NULL COMMENT '价格', `sku_name` varchar(200) DEFAULT NULL COMMENT 'sku名称', `sku_desc` varchar(2000) DEFAULT NULL COMMENT '商品规格描述', `weight` decimal(10,2) DEFAULT NULL COMMENT '重量', `tm_id` bigint(20) DEFAULT NULL COMMENT '品牌(冗余)', `category3_id` bigint(20) DEFAULT NULL COMMENT '三级分类id(冗余)', `sku_default_img` varchar(200) DEFAULT NULL COMMENT '默认显示图片(冗余)', `create_time` datetime DEFAULT NULL COMMENT '创建时间', PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT='商品表'; ~~~ * 商品一级类目表(base\_category1) ~~~sql CREATE TABLE `base_category1` ( `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '编号', `name` varchar(10) NOT NULL COMMENT '分类名称', PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT='一级分类表'; ~~~ * 商品二级类目表(base\_category2) ~~~sql CREATE TABLE `base_category2` ( `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '编号', `name` varchar(200) NOT NULL COMMENT '二级分类名称', `category1_id` bigint(20) DEFAULT NULL COMMENT '一级分类编号', PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT='二级分类表'; ~~~ * 商品三级类目表(base\_category3) ~~~sql CREATE TABLE `base_category3` ( `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '编号', `name` varchar(200) NOT NULL COMMENT '三级分类名称', `category2_id` bigint(20) DEFAULT NULL COMMENT '二级分类编号', PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT='三级分类表'; ~~~ * 省份表(base\_province) ~~~sql CREATE TABLE `base_province` ( `id` int(20) DEFAULT NULL COMMENT 'id', `name` varchar(20) DEFAULT NULL COMMENT '省名称', `region_id` int(20) DEFAULT NULL COMMENT '大区id', `area_code` varchar(20) DEFAULT NULL COMMENT '行政区位码' ) ENGINE=InnoDB DEFAULT CHARSET=utf8; ~~~ * 区域表(base\_region) ~~~sql CREATE TABLE `base_region` ( `id` int(20) NOT NULL COMMENT '大区id', `region_name` varchar(20) DEFAULT NULL COMMENT '大区名称', PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; ~~~ > 注意:以上的建表语句是在MySQL中完成的,完整的建表及模拟数据生成脚本见: > > 链接:[https://pan.baidu.com/s/1fcMgDHGKedOpzqLbSRUGwA](https://links.jianshu.com/go?to=https%3A%2F%2Fpan.baidu.com%2Fs%2F1fcMgDHGKedOpzqLbSRUGwA) 提取码:zuqw ## 数据处理流程 ### ODS层数据同步 关于ODS层的数据同步参见我的另一篇文章[基于Canal与Flink实现数据实时增量同步(一)](https://links.jianshu.com/go?to=https%3A%2F%2Fmp.weixin.qq.com%2Fs%2FooPAScXAw2soqlgEoSbRAw)。主要使用canal解析MySQL的binlog日志,然后将其写入到Kafka对应的topic中。由于篇幅限制,不会对具体的细节进行说明。同步之后的结果如下图所示: ![](https://img.kancloud.cn/19/88/1988fe082b2dde9d11d85912d62e749f_898x297.jpg) image ### DIM层维表数据准备 本案例中将维表存储在了MySQL中,实际生产中会用HBase存储维表数据。我们主要用到两张维表:**区域维表**和**商品维表**。处理过程如下: * 区域维表 首先将`mydw.base_province`和`mydw.base_region`这个主题对应的数据抽取到MySQL中,主要使用Flink SQL的Kafka数据源对应的canal-json格式,注意:在执行装载之前,需要先在MySQL中创建对应的表,本文使用的MySQL数据库的名字为**dim**,用于存放维表数据。如下: ~~~sql -- ------------------------- -- 省份 -- kafka Source -- ------------------------- DROP TABLE IF EXISTS `ods_base_province`; CREATE TABLE `ods_base_province` ( `id` INT, `name` STRING, `region_id` INT , `area_code`STRING ) WITH( 'connector' = 'kafka', 'topic' = 'mydw.base_province', 'properties.bootstrap.servers' = 'kms-3:9092', 'properties.group.id' = 'testGroup', 'format' = 'canal-json' , 'scan.startup.mode' = 'earliest-offset' ) ; -- ------------------------- -- 省份 -- MySQL Sink -- ------------------------- DROP TABLE IF EXISTS `base_province`; CREATE TABLE `base_province` ( `id` INT, `name` STRING, `region_id` INT , `area_code`STRING, PRIMARY KEY (id) NOT ENFORCED ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://kms-1:3306/dim', 'table-name' = 'base_province', -- MySQL中的待插入数据的表 'driver' = 'com.mysql.jdbc.Driver', 'username' = 'root', 'password' = '123qwe', 'sink.buffer-flush.interval' = '1s' ); -- ------------------------- -- 省份 -- MySQL Sink Load Data -- ------------------------- INSERT INTO base_province SELECT * FROM ods_base_province; -- ------------------------- -- 区域 -- kafka Source -- ------------------------- DROP TABLE IF EXISTS `ods_base_region`; CREATE TABLE `ods_base_region` ( `id` INT, `region_name` STRING ) WITH( 'connector' = 'kafka', 'topic' = 'mydw.base_region', 'properties.bootstrap.servers' = 'kms-3:9092', 'properties.group.id' = 'testGroup', 'format' = 'canal-json' , 'scan.startup.mode' = 'earliest-offset' ) ; -- ------------------------- -- 区域 -- MySQL Sink -- ------------------------- DROP TABLE IF EXISTS `base_region`; CREATE TABLE `base_region` ( `id` INT, `region_name` STRING, PRIMARY KEY (id) NOT ENFORCED ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://kms-1:3306/dim', 'table-name' = 'base_region', -- MySQL中的待插入数据的表 'driver' = 'com.mysql.jdbc.Driver', 'username' = 'root', 'password' = '123qwe', 'sink.buffer-flush.interval' = '1s' ); -- ------------------------- -- 区域 -- MySQL Sink Load Data -- ------------------------- INSERT INTO base_region SELECT * FROM ods_base_region; ~~~ 经过上面的步骤,将创建维表所需要的原始数据已经存储到了MySQL中,接下来就需要在MySQL中创建维表,我们使用上面的两张表,创建一张视图:`dim_province`作为维表: ~~~sql -- --------------------------------- -- DIM层,区域维表, -- 在MySQL中创建视图 -- --------------------------------- DROP VIEW IF EXISTS dim_province; CREATE VIEW dim_province AS SELECT bp.id AS province_id, bp.name AS province_name, br.id AS region_id, br.region_name AS region_name, bp.area_code AS area_code FROM base_region br JOIN base_province bp ON br.id= bp.region_id ; ~~~ 这样我们所需要的维表:dim\_province就创建好了,只需要在维表join时,使用Flink SQL创建JDBC的数据源,就可以使用该维表了。同理,我们使用相同的方法创建商品维表,具体如下: ~~~sql -- ------------------------- -- 一级类目表 -- kafka Source -- ------------------------- DROP TABLE IF EXISTS `ods_base_category1`; CREATE TABLE `ods_base_category1` ( `id` BIGINT, `name` STRING )WITH( 'connector' = 'kafka', 'topic' = 'mydw.base_category1', 'properties.bootstrap.servers' = 'kms-3:9092', 'properties.group.id' = 'testGroup', 'format' = 'canal-json' , 'scan.startup.mode' = 'earliest-offset' ) ; -- ------------------------- -- 一级类目表 -- MySQL Sink -- ------------------------- DROP TABLE IF EXISTS `base_category1`; CREATE TABLE `base_category1` ( `id` BIGINT, `name` STRING, PRIMARY KEY (id) NOT ENFORCED ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://kms-1:3306/dim', 'table-name' = 'base_category1', -- MySQL中的待插入数据的表 'driver' = 'com.mysql.jdbc.Driver', 'username' = 'root', 'password' = '123qwe', 'sink.buffer-flush.interval' = '1s' ); -- ------------------------- -- 一级类目表 -- MySQL Sink Load Data -- ------------------------- INSERT INTO base_category1 SELECT * FROM ods_base_category1; -- ------------------------- -- 二级类目表 -- kafka Source -- ------------------------- DROP TABLE IF EXISTS `ods_base_category2`; CREATE TABLE `ods_base_category2` ( `id` BIGINT, `name` STRING, `category1_id` BIGINT )WITH( 'connector' = 'kafka', 'topic' = 'mydw.base_category2', 'properties.bootstrap.servers' = 'kms-3:9092', 'properties.group.id' = 'testGroup', 'format' = 'canal-json' , 'scan.startup.mode' = 'earliest-offset' ) ; -- ------------------------- -- 二级类目表 -- MySQL Sink -- ------------------------- DROP TABLE IF EXISTS `base_category2`; CREATE TABLE `base_category2` ( `id` BIGINT, `name` STRING, `category1_id` BIGINT, PRIMARY KEY (id) NOT ENFORCED ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://kms-1:3306/dim', 'table-name' = 'base_category2', -- MySQL中的待插入数据的表 'driver' = 'com.mysql.jdbc.Driver', 'username' = 'root', 'password' = '123qwe', 'sink.buffer-flush.interval' = '1s' ); -- ------------------------- -- 二级类目表 -- MySQL Sink Load Data -- ------------------------- INSERT INTO base_category2 SELECT * FROM ods_base_category2; -- ------------------------- -- 三级类目表 -- kafka Source -- ------------------------- DROP TABLE IF EXISTS `ods_base_category3`; CREATE TABLE `ods_base_category3` ( `id` BIGINT, `name` STRING, `category2_id` BIGINT )WITH( 'connector' = 'kafka', 'topic' = 'mydw.base_category3', 'properties.bootstrap.servers' = 'kms-3:9092', 'properties.group.id' = 'testGroup', 'format' = 'canal-json' , 'scan.startup.mode' = 'earliest-offset' ) ; -- ------------------------- -- 三级类目表 -- MySQL Sink -- ------------------------- DROP TABLE IF EXISTS `base_category3`; CREATE TABLE `base_category3` ( `id` BIGINT, `name` STRING, `category2_id` BIGINT, PRIMARY KEY (id) NOT ENFORCED ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://kms-1:3306/dim', 'table-name' = 'base_category3', -- MySQL中的待插入数据的表 'driver' = 'com.mysql.jdbc.Driver', 'username' = 'root', 'password' = '123qwe', 'sink.buffer-flush.interval' = '1s' ); -- ------------------------- -- 三级类目表 -- MySQL Sink Load Data -- ------------------------- INSERT INTO base_category3 SELECT * FROM ods_base_category3; -- ------------------------- -- 商品表 -- Kafka Source -- ------------------------- DROP TABLE IF EXISTS `ods_sku_info`; CREATE TABLE `ods_sku_info` ( `id` BIGINT, `spu_id` BIGINT, `price` DECIMAL(10,0), `sku_name` STRING, `sku_desc` STRING, `weight` DECIMAL(10,2), `tm_id` BIGINT, `category3_id` BIGINT, `sku_default_img` STRING, `create_time` TIMESTAMP(0) ) WITH( 'connector' = 'kafka', 'topic' = 'mydw.sku_info', 'properties.bootstrap.servers' = 'kms-3:9092', 'properties.group.id' = 'testGroup', 'format' = 'canal-json' , 'scan.startup.mode' = 'earliest-offset' ) ; -- ------------------------- -- 商品表 -- MySQL Sink -- ------------------------- DROP TABLE IF EXISTS `sku_info`; CREATE TABLE `sku_info` ( `id` BIGINT, `spu_id` BIGINT, `price` DECIMAL(10,0), `sku_name` STRING, `sku_desc` STRING, `weight` DECIMAL(10,2), `tm_id` BIGINT, `category3_id` BIGINT, `sku_default_img` STRING, `create_time` TIMESTAMP(0), PRIMARY KEY (tm_id) NOT ENFORCED ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://kms-1:3306/dim', 'table-name' = 'sku_info', -- MySQL中的待插入数据的表 'driver' = 'com.mysql.jdbc.Driver', 'username' = 'root', 'password' = '123qwe', 'sink.buffer-flush.interval' = '1s' ); -- ------------------------- -- 商品 -- MySQL Sink Load Data -- ------------------------- INSERT INTO sku_info SELECT * FROM ods_sku_info; ~~~ 经过上面的步骤,我们可以将创建商品维表的基础数据表同步到MySQL中,同样需要提前创建好对应的数据表。接下来我们使用上面的基础表在mySQL的dim库中创建一张视图:`dim_sku_info`,用作后续使用的维表。 ~~~sql -- --------------------------------- -- DIM层,商品维表, -- 在MySQL中创建视图 -- --------------------------------- CREATE VIEW dim_sku_info AS SELECT si.id AS id, si.sku_name AS sku_name, si.category3_id AS c3_id, si.weight AS weight, si.tm_id AS tm_id, si.price AS price, si.spu_id AS spu_id, c3.name AS c3_name, c2.id AS c2_id, c2.name AS c2_name, c3.id AS c1_id, c3.name AS c1_name FROM ( sku_info si JOIN base_category3 c3 ON si.category3_id = c3.id JOIN base_category2 c2 ON c3.category2_id =c2.id JOIN base_category1 c1 ON c2.category1_id = c1.id ); ~~~ 至此,我们所需要的维表数据已经准备好了,接下来开始处理DWD层的数据。 ### DWD层数据处理 经过上面的步骤,我们已经将所用的维表已经准备好了。接下来我们将对ODS的原始数据进行处理,加工成DWD层的明细宽表。具体过程如下: ~~~sql -- ------------------------- -- 订单详情 -- Kafka Source -- ------------------------- DROP TABLE IF EXISTS `ods_order_detail`; CREATE TABLE `ods_order_detail`( `id` BIGINT, `order_id` BIGINT, `sku_id` BIGINT, `sku_name` STRING, `img_url` STRING, `order_price` DECIMAL(10,2), `sku_num` INT, `create_time` TIMESTAMP(0) ) WITH( 'connector' = 'kafka', 'topic' = 'mydw.order_detail', 'properties.bootstrap.servers' = 'kms-3:9092', 'properties.group.id' = 'testGroup', 'format' = 'canal-json' , 'scan.startup.mode' = 'earliest-offset' ) ; -- ------------------------- -- 订单信息 -- Kafka Source -- ------------------------- DROP TABLE IF EXISTS `ods_order_info`; CREATE TABLE `ods_order_info` ( `id` BIGINT, `consignee` STRING, `consignee_tel` STRING, `total_amount` DECIMAL(10,2), `order_status` STRING, `user_id` BIGINT, `payment_way` STRING, `delivery_address` STRING, `order_comment` STRING, `out_trade_no` STRING, `trade_body` STRING, `create_time` TIMESTAMP(0) , `operate_time` TIMESTAMP(0) , `expire_time` TIMESTAMP(0) , `tracking_no` STRING, `parent_order_id` BIGINT, `img_url` STRING, `province_id` INT ) WITH( 'connector' = 'kafka', 'topic' = 'mydw.order_info', 'properties.bootstrap.servers' = 'kms-3:9092', 'properties.group.id' = 'testGroup', 'format' = 'canal-json' , 'scan.startup.mode' = 'earliest-offset' ) ; -- --------------------------------- -- DWD层,支付订单明细表dwd_paid_order_detail -- --------------------------------- DROP TABLE IF EXISTS dwd_paid_order_detail; CREATE TABLE dwd_paid_order_detail ( detail_id BIGINT, order_id BIGINT, user_id BIGINT, province_id INT, sku_id BIGINT, sku_name STRING, sku_num INT, order_price DECIMAL(10,0), create_time TIMESTAMP(0), pay_time TIMESTAMP(0) ) WITH ( 'connector' = 'kafka', 'topic' = 'dwd_paid_order_detail', 'scan.startup.mode' = 'earliest-offset', 'properties.bootstrap.servers' = 'kms-3:9092', 'format' = 'changelog-json' ); -- --------------------------------- -- DWD层,已支付订单明细表 -- 向dwd_paid_order_detail装载数据 -- --------------------------------- INSERT INTO dwd_paid_order_detail SELECT od.id, oi.id order_id, oi.user_id, oi.province_id, od.sku_id, od.sku_name, od.sku_num, od.order_price, oi.create_time, oi.operate_time FROM ( SELECT * FROM ods_order_info WHERE order_status = '2' -- 已支付 ) oi JOIN ( SELECT * FROM ods_order_detail ) od ON oi.id = od.order_id; ~~~ ![](https://img.kancloud.cn/28/dd/28dd4d6fa8465d25a539e44bd03f7060_1894x889.jpg) image ### ADS层数据 经过上面的步骤,我们创建了一张dwd\_paid\_order\_detail明细宽表,并将该表存储在了Kafka中。接下来我们将使用这张明细宽表与维表进行JOIN,得到我们ADS应用层数据。 * **ads\_province\_index** 首先在MySQL中创建对应的ADS目标表:**ads\_province\_index** ~~~sql CREATE TABLE ads.ads_province_index( province_id INT(10), area_code VARCHAR(100), province_name VARCHAR(100), region_id INT(10), region_name VARCHAR(100), order_amount DECIMAL(10,2), order_count BIGINT(10), dt VARCHAR(100), PRIMARY KEY (province_id, dt) ) ; ~~~ 向MySQL的ADS层目标装载数据: ~~~sql -- Flink SQL Cli操作 -- --------------------------------- -- 使用 DDL创建MySQL中的ADS层表 -- 指标:1.每天每个省份的订单数 -- 2.每天每个省份的订单金额 -- --------------------------------- CREATE TABLE ads_province_index( province_id INT, area_code STRING, province_name STRING, region_id INT, region_name STRING, order_amount DECIMAL(10,2), order_count BIGINT, dt STRING, PRIMARY KEY (province_id, dt) NOT ENFORCED ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://kms-1:3306/ads', 'table-name' = 'ads_province_index', 'driver' = 'com.mysql.jdbc.Driver', 'username' = 'root', 'password' = '123qwe' ); -- --------------------------------- -- dwd_paid_order_detail已支付订单明细宽表 -- --------------------------------- CREATE TABLE dwd_paid_order_detail ( detail_id BIGINT, order_id BIGINT, user_id BIGINT, province_id INT, sku_id BIGINT, sku_name STRING, sku_num INT, order_price DECIMAL(10,2), create_time STRING, pay_time STRING ) WITH ( 'connector' = 'kafka', 'topic' = 'dwd_paid_order_detail', 'scan.startup.mode' = 'earliest-offset', 'properties.bootstrap.servers' = 'kms-3:9092', 'format' = 'changelog-json' ); -- --------------------------------- -- tmp_province_index -- 订单汇总临时表 -- --------------------------------- CREATE TABLE tmp_province_index( province_id INT, order_count BIGINT,-- 订单数 order_amount DECIMAL(10,2), -- 订单金额 pay_date DATE )WITH ( 'connector' = 'kafka', 'topic' = 'tmp_province_index', 'scan.startup.mode' = 'earliest-offset', 'properties.bootstrap.servers' = 'kms-3:9092', 'format' = 'changelog-json' ); -- --------------------------------- -- tmp_province_index -- 订单汇总临时表数据装载 -- --------------------------------- INSERT INTO tmp_province_index SELECT province_id, count(distinct order_id) order_count,-- 订单数 sum(order_price * sku_num) order_amount, -- 订单金额 TO_DATE(pay_time,'yyyy-MM-dd') pay_date FROM dwd_paid_order_detail GROUP BY province_id,TO_DATE(pay_time,'yyyy-MM-dd') ; -- --------------------------------- -- tmp_province_index_source -- 使用该临时汇总表,作为数据源 -- --------------------------------- CREATE TABLE tmp_province_index_source( province_id INT, order_count BIGINT,-- 订单数 order_amount DECIMAL(10,2), -- 订单金额 pay_date DATE, proctime as PROCTIME() -- 通过计算列产生一个处理时间列 ) WITH ( 'connector' = 'kafka', 'topic' = 'tmp_province_index', 'scan.startup.mode' = 'earliest-offset', 'properties.bootstrap.servers' = 'kms-3:9092', 'format' = 'changelog-json' ); -- --------------------------------- -- DIM层,区域维表, -- 创建区域维表数据源 -- --------------------------------- DROP TABLE IF EXISTS `dim_province`; CREATE TABLE dim_province ( province_id INT, province_name STRING, area_code STRING, region_id INT, region_name STRING , PRIMARY KEY (province_id) NOT ENFORCED ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://kms-1:3306/dim', 'table-name' = 'dim_province', 'driver' = 'com.mysql.jdbc.Driver', 'username' = 'root', 'password' = '123qwe', 'scan.fetch-size' = '100' ); -- --------------------------------- -- 向ads_province_index装载数据 -- 维表JOIN -- --------------------------------- INSERT INTO ads_province_index SELECT pc.province_id, dp.area_code, dp.province_name, dp.region_id, dp.region_name, pc.order_amount, pc.order_count, cast(pc.pay_date as VARCHAR) FROM tmp_province_index_source pc JOIN dim_province FOR SYSTEM_TIME AS OF pc.proctime as dp ON dp.province_id = pc.province_id; ~~~ 当提交任务之后:观察Flink WEB UI: ![](https://img.kancloud.cn/c5/cd/c5cd6c9da275cc7ac74c663c54a8f133_1878x864.jpg) image 查看ADS层的ads\_province\_index表数据: ![](https://img.kancloud.cn/17/d5/17d56b76ff300951bfd3d80cec3884dc_1414x304.jpg) image * **ads\_sku\_index** 首先在MySQL中创建对应的ADS目标表:**ads\_sku\_index** ~~~sql CREATE TABLE ads_sku_index ( sku_id BIGINT(10), sku_name VARCHAR(100), weight DOUBLE, tm_id BIGINT(10), price DOUBLE, spu_id BIGINT(10), c3_id BIGINT(10), c3_name VARCHAR(100) , c2_id BIGINT(10), c2_name VARCHAR(100), c1_id BIGINT(10), c1_name VARCHAR(100), order_amount DOUBLE, order_count BIGINT(10), sku_count BIGINT(10), dt varchar(100), PRIMARY KEY (sku_id,dt) ); ~~~ 向MySQL的ADS层目标装载数据: ~~~sql -- --------------------------------- -- 使用 DDL创建MySQL中的ADS层表 -- 指标:1.每天每个商品对应的订单个数 -- 2.每天每个商品对应的订单金额 -- 3.每天每个商品对应的数量 -- --------------------------------- CREATE TABLE ads_sku_index ( sku_id BIGINT, sku_name VARCHAR, weight DOUBLE, tm_id BIGINT, price DOUBLE, spu_id BIGINT, c3_id BIGINT, c3_name VARCHAR , c2_id BIGINT, c2_name VARCHAR, c1_id BIGINT, c1_name VARCHAR, order_amount DOUBLE, order_count BIGINT, sku_count BIGINT, dt varchar, PRIMARY KEY (sku_id,dt) NOT ENFORCED ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://kms-1:3306/ads', 'table-name' = 'ads_sku_index', 'driver' = 'com.mysql.jdbc.Driver', 'username' = 'root', 'password' = '123qwe' ); -- --------------------------------- -- dwd_paid_order_detail已支付订单明细宽表 -- --------------------------------- CREATE TABLE dwd_paid_order_detail ( detail_id BIGINT, order_id BIGINT, user_id BIGINT, province_id INT, sku_id BIGINT, sku_name STRING, sku_num INT, order_price DECIMAL(10,2), create_time STRING, pay_time STRING ) WITH ( 'connector' = 'kafka', 'topic' = 'dwd_paid_order_detail', 'scan.startup.mode' = 'earliest-offset', 'properties.bootstrap.servers' = 'kms-3:9092', 'format' = 'changelog-json' ); -- --------------------------------- -- tmp_sku_index -- 商品指标统计 -- --------------------------------- CREATE TABLE tmp_sku_index( sku_id BIGINT, order_count BIGINT,-- 订单数 order_amount DECIMAL(10,2), -- 订单金额 order_sku_num BIGINT, pay_date DATE )WITH ( 'connector' = 'kafka', 'topic' = 'tmp_sku_index', 'scan.startup.mode' = 'earliest-offset', 'properties.bootstrap.servers' = 'kms-3:9092', 'format' = 'changelog-json' ); -- --------------------------------- -- tmp_sku_index -- 数据装载 -- --------------------------------- INSERT INTO tmp_sku_index SELECT sku_id, count(distinct order_id) order_count,-- 订单数 sum(order_price * sku_num) order_amount, -- 订单金额 sum(sku_num) order_sku_num, TO_DATE(pay_time,'yyyy-MM-dd') pay_date FROM dwd_paid_order_detail GROUP BY sku_id,TO_DATE(pay_time,'yyyy-MM-dd') ; -- --------------------------------- -- tmp_sku_index_source -- 使用该临时汇总表,作为数据源 -- --------------------------------- CREATE TABLE tmp_sku_index_source( sku_id BIGINT, order_count BIGINT,-- 订单数 order_amount DECIMAL(10,2), -- 订单金额 order_sku_num BIGINT, pay_date DATE, proctime as PROCTIME() -- 通过计算列产生一个处理时间列 ) WITH ( 'connector' = 'kafka', 'topic' = 'tmp_sku_index', 'scan.startup.mode' = 'earliest-offset', 'properties.bootstrap.servers' = 'kms-3:9092', 'format' = 'changelog-json' ); -- --------------------------------- -- DIM层,商品维表, -- 创建商品维表数据源 -- --------------------------------- DROP TABLE IF EXISTS `dim_sku_info`; CREATE TABLE dim_sku_info ( id BIGINT, sku_name STRING, c3_id BIGINT, weight DECIMAL(10,2), tm_id BIGINT, price DECIMAL(10,2), spu_id BIGINT, c3_name STRING, c2_id BIGINT, c2_name STRING, c1_id BIGINT, c1_name STRING, PRIMARY KEY (id) NOT ENFORCED ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://kms-1:3306/dim', 'table-name' = 'dim_sku_info', 'driver' = 'com.mysql.jdbc.Driver', 'username' = 'root', 'password' = '123qwe', 'scan.fetch-size' = '100' ); -- --------------------------------- -- 向ads_sku_index装载数据 -- 维表JOIN -- --------------------------------- INSERT INTO ads_sku_index SELECT sku_id , sku_name , weight , tm_id , price , spu_id , c3_id , c3_name, c2_id , c2_name , c1_id , c1_name , sc.order_amount, sc.order_count , sc.order_sku_num , cast(sc.pay_date as VARCHAR) FROM tmp_sku_index_source sc JOIN dim_sku_info FOR SYSTEM_TIME AS OF sc.proctime as ds ON ds.id = sc.sku_id ; ~~~ 当提交任务之后:观察Flink WEB UI: ![](https://img.kancloud.cn/1a/ee/1aee6a7be651094b0f4391ab9d7c9e54_1867x872.jpg) image 查看ADS层的ads\_sku\_index表数据: ![](https://img.kancloud.cn/14/7f/147fc525aebfa1c97c7859c15d831ac8_1759x358.jpg) image ### FineBI结果展示 ![](https://img.kancloud.cn/49/ca/49cabce10e569d35856cec52f05f3787_1915x978.jpg) ## 其他注意点 ### Flink1.11.0存在的bug 当在代码中使用Flink1.11.0版本时,如果将一个change-log的数据源insert到一个upsert sink时,会报如下异常: ~~~bash [ERROR] Could not execute SQL statement. Reason: org.apache.flink.table.api.TableException: Provided trait [BEFORE_AND_AFTER] can't satisfy required trait [ONLY_UPDATE_AFTER]. This is a bug in planner, please file an issue. Current node is TableSourceScan(table=[[default_catalog, default_database, t_pick_order]], fields=[order_no, status]) ~~~ 该bug目前已被修复,修复可以在Flink1.11.1中使用。 ## 总结 本文主要分享了构建一个实时数仓的demo案例,通过本文可以了解实时数仓的数据处理流程,在此基础之上,对Flink SQL的CDC会有更加深刻的认识。另外,本文给出了非常详细的使用案例,你可以直接上手进行操作,在实践中探索实时数仓的构建流程。