💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
# 附录2:defer推迟函数调用语法的实现 使用过Go语言的应该都知道defer这个语法,它用来推迟一个函数的执行,在函数执行返回前首先检查当前函数内是否有推迟执行的函数,如果有则执行,然后再返回。defer是一个非常有用的语法,这个功能可以很方便的在函数结束前执行一些清理工作,比如关闭打开的文件、关闭连接、释放资源、解锁等等。这样延迟一个函数有以下两个好处: * (1) 靠近使用位置,避免漏掉清理工作,同时比放在函数结尾要清晰 * (2) 如果有多处返回的地方可以避免代码重复,比如函数中有很多处return 在一个函数中可以使用多个defer,其执行顺序与栈类似:后进先出,先定义的defer后执行。另外,在返回之后定义的defer将不会被执行,只有返回前定义的才会执行,通过exit退出程序的情况也不会执行任何defer。 在PHP中并没有实现类似的语法,本节我们将尝试在PHP中实现类似Go语言中defer的功能。此功能的实现需要对PHP的语法解析、抽象语法树/opcode的编译、opcode指令的执行等环节进行改造,涉及的地方比较多,但是改动点比较简单,可以很好的帮助大家完整的理解PHP编译、执行两个核心阶段的实现。总体实现思路: * __(1)语法解析:__ defer本质上还是函数调用,只是将调用时机移到了函数的最后,所以编译时可以复用调用函数的规则,但是需要与普通的调用区分开,所以我们新增一个AST节点类型,其子节点为为正常函数调用编译的AST,语法我们定义为:`defer function_name()`; * __(2)opcode编译:__ 编译opcode时也复用调用函数的编译逻辑,不同的地方在于把defer放在最后编译,另外需要在编译return前新增一条opcode,用于执行return前跳转到defer开始的位置,在defer的最后也需要新增一条opcode,用于执行完defer后跳回return的位置; * __(3)执行阶段:__ 执行时如果发现是return前新增的opcode则跳转到defer开始的位置,同时把return的位置记录下来,执行完defer后再跳回return。 编译后的opcode指令如下图所示: ![](../img/defer.png) 接下来我们详细介绍下各个环节的改动,一步步实现defer功能。 __(1)语法解析__ 想让PHP支持`defer function_name()`的语法首先需要修改的是词法解析规则,将"defer"关键词解析为token:T_DEFER,这样词法扫描器在匹配token时遇到"defer"将告诉语法解析器这是一个T_DEFER。这一步改动比较简单,PHP的词法解析规则定义在zend_language_scanner.l中,加入以下代码即可: ```c <ST_IN_SCRIPTING>"defer" { RETURN_TOKEN(T_DEFER); } ``` 完成词法解析规则的修改后接着需要定义语法解析规则,这是非常关键的一步,语法解析器会根据配置的语法规则将PHP代码解析为抽象语法树(AST)。普通函数调用会被解析为ZEND_AST_CALL类型的AST节点,我们新增一种节点类型:ZEND_AST_DEFER_CALL,抽象语法树的节点类型为enum,定义在zend_ast.h中,同时此节点只需要一个子节点,这个子节点用于保存ZEND_AST_CALL节点,因此zend_ast.h的修改如下: ```c enum _zend_ast_kind { ... /* 1 child node */ ... ZEND_AST_DEFER_CALL .... } ``` 定义完AST节点后就可以在配置语法解析规则了,把defer语法解析为ZEND_AST_DEFER_CALL节点,我们把这条语法规则定义在"statement:"节点下,if、echo、for等语法都定义在此节点下,语法解析规则文件为zend_language_parser.y: ```c statement: '{' inner_statement_list '}' { $$ = $2; } ... | T_DEFER function_call ';' { $$ = zend_ast_create(ZEND_AST_DEFER_CALL, $2); } ; ``` 修改完这两个文件后需要分别调用re2c、yacc生成对应的C文件,具体的生成命令可以在Makefile.frag中看到: ```sh $ re2c --no-generation-date --case-inverted -cbdFt Zend/zend_language_scanner_defs.h -oZend/zend_language_scanner.c Zend/zend_language_scanner.l $ yacc -p zend -v -d Zend/zend_language_parser.y -oZend/zend_language_parser.c ``` 执行完以后将在Zend目录下重新生成zend_language_scanner.c、zend_language_parser.c两个文件。到这一步已经完成生成抽象语法树的工作了,重新编译PHP后已经能够解析defer语法了,将会生成以下节点: ![](../img/defer_ast.png) __(2)编译ZEND_AST_DEFER_CALL__ 生成抽象语法树后接下来就是编译生成opcodes的操作,即从AST->Opcodes。编译ZEND_AST_DEFER_CALL节点时不能立即进行编译,需要等到当前脚本或函数全部编译完以后再进行编译,所以在编译过程需要把ZEND_AST_DEFER_CALL节点先缓存下来,参考循环结构编译时生成的zend_brk_cont_element的存储位置,我们也把ZEND_AST_DEFER_CALL节点保存在zend_op_array中,通过数组进行存储,将ZEND_AST_DEFER_CALL节点依次存入该数组,zend_op_array中加入以下几个成员: * __last_defer:__ 整形,记录当前编译的defer数 * __defer_start_op:__ 整形,用于记录defer编译生成opcode指令的起始位置 * __defer_call_array:__ 保存ZEND_AST_DEFER_CALL节点的数组,用于保存ast节点的地址 ```c struct _zend_op_array { ... int last_defer; uint32_t defer_start_op; zend_ast **defer_call_array; } ``` 修改完数据结构后接着对应修改zend_op_array初始化的过程: ```c //zend_opcode.c void init_op_array(zend_op_array *op_array, zend_uchar type, int initial_ops_size) { ... op_array->last_defer = 0; op_array->defer_start_op = 0; op_array->defer_call_array = NULL; ... } ``` 完成依赖的这些数据结构的改造后接下来开始编写具体的编译逻辑,也就是编译ZEND_AST_DEFER_CALL的处理。抽象语法树的编译入口函数为zend_compile_top_stmt(),然后根据不同节点的类型进行相应的编译,我们在zend_compile_stmt()函数中对ZEND_AST_DEFER_CALL节点进行编译: ```c void zend_compile_stmt(zend_ast *ast) { ... switch (ast->kind) { ... case ZEND_AST_DEFER_CALL: zend_compile_defer_call(ast); break ... } } ``` 编译过程只是将ZEND_AST_DEFER_CALL的子节点(即:ZEND_AST_CALL)保存到zend_op_array->defer_call_array数组中,注意这里defer_call_array数组还没有分配内存,参考循环结构的实现,这里我们定义了一个函数用于数组的分配: ```c //zend_compile.c void zend_compile_defer_call(zend_ast *ast) { if(!ast){ return; } zend_ast **call_ast = NULL; //将普通函数调用的ast节点保存到defer_call_array数组中 call_ast = get_next_defer_call(CG(active_op_array)); *call_ast = ast->child[0]; } //zend_opcode.c zend_ast **get_next_defer_call(zend_op_array *op_array) { op_array->last_defer++; op_array->defer_call_array = erealloc(op_array->defer_call_array, sizeof(zend_ast*)*op_array->last_defer); return &op_array->defer_call_array[op_array->last_defer-1]; } ``` 既然分配了defer_call_array数组的内存就需要在zend_op_array销毁时释放: ```c //zend_opcode.c ZEND_API void destroy_op_array(zend_op_array *op_array) { ... if (op_array->defer_call_array) { efree(op_array->defer_call_array); } ... } ``` 编译完整个脚本或函数后,最后还会编译一条ZEND_RETURN,也就是返回指令,相当于ret指令,注意:这条opcode并不是我们在脚本中定义的return语句的,而是PHP内核为我们加的一条指令,这就是为什么有些函数我们没有写return也能返回的原因,任何函数或脚本都会生成这样一条指令。我们缓存在zend_op_array->defer_call_array数组中defer就是要在这时进行编译,也就是把defer的指令编译在最后。内核最后编译返回的这条指令由zend_emit_final_return()方法完成,我们把defer的编译放在此方法的末尾: ```c //zend_compile.c void zend_emit_final_return(zval *zv) { ... ret = zend_emit_op(NULL, returns_reference ? ZEND_RETURN_BY_REF : ZEND_RETURN, &zn, NULL); ret->extended_value = -1; //编译推迟执行的函数调用 zend_emit_defer_call(); } ``` 前面已经说过,defer本质上就是函数调用,所以编译的过程直接复用普通函数调用的即可。另外,在编译时把起始位置记录到zend_op_array->defer_start_op中,因为在执行return前需要知道跳转到什么位置,这个值就是在那时使用的,具体的用法稍后再作说明。编译时按照倒序的顺序进行编译: ```c //zend_compile.c void zend_emit_defer_call() { if (!CG(active_op_array)->defer_call_array) { return; } zend_ast *call_ast; zend_op *nop; znode result; uint32_t opnum = get_next_op_number(CG(active_op_array)); int defer_num = CG(active_op_array)->last_defer; //记录推迟的函数调用指令开始位置 CG(active_op_array)->defer_start_op = opnum; while(--defer_num >= 0){ call_ast = CG(active_op_array)->defer_call_array[defer_num]; if (call_ast == NULL) { continue; } nop = zend_emit_op(NULL, ZEND_NOP, NULL, NULL); nop->op1.var = -2; //编译函数调用 zend_compile_call(&result, call_ast, BP_VAR_R); } //compile ZEND_DEFER_CALL_END zend_emit_op(NULL, ZEND_DEFER_CALL_END, NULL, NULL); } ``` 编译完推迟的函数调用之后,编译一条ZEND_DEFER_CALL_END指令,该指令用于执行完推迟的函数后跳回return的位置进行返回,opcode定义在zend_vm_opcodes.h中: ```c //zend_vm_opcodes.h #define ZEND_DEFER_CALL_END 174 ``` 还有一个地方你可能已经注意到,在逐个编译defer的函数调用前都生成了一条ZEND_NOP的指令,这个的目的是什么呢?开始的时候已经介绍过defer语法的特点,函数中定义的defer并不是全部执行,在return之后定义的defer是不会执行的,比如: ```go func main(){ defer fmt.Println("A") if 1 == 1{ return } defer fmt.Println("B") } ``` 这种情况下第2个defer就不会生效,因此在return前跳转的位置就不一定是zend_op_array->defer_start_op,有可能会跳过几个函数的调用,所以这里我们通过ZEND_NOP这条空指令对多个defer call进行隔离,同时为避免与其它ZEND_NOP指令混淆,增加一个判断条件:op1.var=-2。这样在return前跳转时就根据此前定义的defer数跳过部分函数的调用,如下图所示。 ![](../img/defer_call.png) 到这一步我们已经完成defer函数调用的编译,此时重新编译PHP后可以看到通过defer推迟的函数调用已经被编译在最后了,只不过这个时候它们不能被执行。 __(3)编译return__ 编译return时需要插入一条指令用于跳转到推迟执行的函数调用指令处,因此这里需要再定义一条opcode:ZEND_DEFER_CALL,在编译过程中defer call还未编译,因此此时还无法知道具体的跳转值。 ```c //zend_vm_opcodes.h #define ZEND_DEFER_CALL 173 #define ZEND_DEFER_CALL_END 174 ``` PHP脚本中声明的return语句由zend_compile_return()方法完成编译,在编译生成ZEND_DEFER_CALL指令时还需要将当前已定义的defer数(即在return前声明的defer)记录下来,用于计算具体的跳转值。 ```c void zend_compile_return(zend_ast *ast) { ... //在return前编译ZEND_DEFER_CALL:用于在执行retur前跳转到defer call if (CG(active_op_array)->defer_call_array) { defer_zn.op_type = IS_UNUSED; defer_zn.u.op.num = CG(active_op_array)->last_defer; zend_emit_op(NULL, ZEND_DEFER_CALL, NULL, &defer_zn); } //编译正常返回的指令 opline = zend_emit_op(NULL, by_ref ? ZEND_RETURN_BY_REF : ZEND_RETURN, &expr_node, NULL); ... } ``` 除了这种return外还有一种我们上面已经提过的return,即PHP内核编译的return指令,当PHP脚本中没有声明return语句时将执行内核添加的那条指令,因此也需要在zend_emit_final_return()加上上面的逻辑。 ```c void zend_emit_final_return(zval *zv) { ... //在return前编译ZEND_DEFER_CALL:用于在执行retur前跳转到defer call if (CG(active_op_array)->defer_call_array) { //当前return之前定义的defer数 defer_zn.op_type = IS_UNUSED; defer_zn.u.op.num = CG(active_op_array)->last_defer; zend_emit_op(NULL, ZEND_DEFER_CALL, NULL, &defer_zn); } //编译返回指令 ret = zend_emit_op(NULL, returns_reference ? ZEND_RETURN_BY_REF : ZEND_RETURN, &zn, NULL); ret->extended_value = -1; //编译推迟执行的函数调用 zend_emit_defer_call(); } ``` __(4)计算ZEND_DEFER_CALL指令的跳转位置__ 前面我们已经完成了推迟调用函数以及return编译过程的改造,在编译完成后ZEND_DEFER_CALL指令已经能够知道具体的跳转位置了,因为推迟调用的函数已经编译完成了,所以下一步就是为全部的ZEND_DEFER_CALL指令计算跳转值。前面曾介绍过,在编译完成有一个pass_two()的环节,我们就在这里完成具体跳转位置的计算,并把跳转位置保存到ZEND_DEFER_CALL指令的操作数中,在执行阶段直接跳转到对应位置。 ```c ZEND_API int pass_two(zend_op_array *op_array) { zend_op *opline, *end; ... //遍历opcode opline = op_array->opcodes; end = opline + op_array->last; while (opline < end) { switch (opline->opcode) { ... case ZEND_DEFER_CALL: //设置jmp { uint32_t defer_start = op_array->defer_start_op; //skip_defer为当前return之后声明的defer数,也就是不需要执行的defer uint32_t skip_defer = op_array->last_defer - opline->op2.num; //defer_opline为推迟的函数调用起始位置 zend_op *defer_opline = op_array->opcodes + defer_start; uint32_t n = 0; while(n <= skip_defer){ if (defer_opline->opcode == ZEND_NOP && defer_opline->op1.var == -2) { n++; } defer_opline++; defer_start++; } //defer_start为opcode在op_array->opcodes数组中的位置 opline->op1.opline_num = defer_start; //将跳转位置保存到操作数op1中 ZEND_PASS_TWO_UPDATE_JMP_TARGET(op_array, opline, opline->op1); } break; } ... } ... } ``` 这里我们并没有直接编译为ZEND_JMP跳转指令,虽然ZEND_JMP可以跳转到后面的指令位置,但是最后的那条跳回return位置的指令(即:ZEND_DEFER_CALL_END)由于可能存在多个return的原因无法在编译期间确定具体的跳转值,只能在运行期间执行ZEND_DEFER_CALL时才能确定,所以需要在ZEND_DEFER_CALL指令的handler中将return的位置记录下来,执行ZEND_DEFER_CALL_END时根据这个值跳回。 __(5)定义ZEND_DEFER_CALL、ZEND_DEFER_CALL_END指令的handler__ ZEND_DEFER_CALL指令执行时需要将return的位置保存下来,我们把这个值保存到zend_execute_data结构中: ```c //zend_compile.h struct _zend_execute_data { ... const zend_op *return_opline; ... } ``` opcode的handler定义在zend_vm_def.h文件中,定义完成后需要执行`php zend_vm_gen.php`脚本生成具体的handler函数。 ```c ZEND_VM_HANDLER(173, ZEND_DEFER_CALL, ANY, ANY) { USE_OPLINE //1) 将return指令的位置保存到EX(return_opline) EX(return_opline) = opline + 1; //2) 跳转 ZEND_VM_SET_OPCODE(OP_JMP_ADDR(opline, opline->op1)); ZEND_VM_CONTINUE(); } ZEND_VM_HANDLER(174, ZEND_DEFER_CALL_END, ANY, ANY) { USE_OPLINE ZEND_VM_SET_OPCODE(EX(return_opline)); ZEND_VM_CONTINUE(); } ``` 到目前为止我们已经完成了全部的修改,重新编译PHP后就可以使用defer语法了: ```php function shutdown($a){ echo $a."\n"; } function test(){ $a = 1234; defer shutdown($a); $a = 8888; if(1){ return "mid end\n"; } defer shutdown("9999"); return "last end\n"; } echo test(); ``` 执行后将显示: ```sh 8888 mid end ``` 这里我们只实现了普通函数调用的方式,关于成员方法、静态方法、匿名函数等调用方式并未实现,留给有兴趣的读者自己去实现。 完整代码:[https://github.com/pangudashu/php-7.0.12](https://github.com/pangudashu/php-7.0.12)