# Bloom Filter
## 方法介绍
### 一、什么是Bloom Filter
Bloom Filter,被译作称布隆过滤器,是一种空间效率很高的随机数据结构,Bloom filter可以看做是对bit-map的扩展,它的原理是:
- 当一个元素被加入集合时,通过K个Hash函数将这个元素映射成一个位阵列(Bit array)中的K个点,把它们置为1**。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:
- 如果这些点有任何一个0,则被检索元素一定不在;
- 如果都是1,则被检索元素很可能在。
其可以用来实现数据字典,进行数据的判重,或者集合求交集。
但Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。
#### 1.1、集合表示和元素查询
下面我们具体来看Bloom Filter是如何用位数组表示集合的。初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为0。
![](../images/9/9.3/9.3.1.jpg)
为了表达S={x<sub>1</sub>, x<sub>2</sub>,…,x<sub>n</sub>}这样一个n个元素的集合,Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到{1,…,m}的范围中。对任意一个元素x,第i个哈希函数映射的位置h<sub>i</sub>(x)就会被置为1(1≤i≤k)。注意,如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位,即第二个“1“处)。
![](../images/9/9.3/9.3.2.jpg)
在判断y是否属于这个集合时,我们对y应用k次哈希函数,如果所有h<sub>i</sub>(y)的位置都是1(1≤i≤k),那么我们就认为y是集合中的元素,否则就认为y不是集合中的元素。下图中y<sub>1</sub>就不是集合中的元素(因为y1有一处指向了“0”位)。y<sub>2</sub>或者属于这个集合,或者刚好是一个false positive。
![](../images/9/9.3/9.3.3.jpg)
#### 1.2、错误率估计
前面我们已经提到了,Bloom Filter在判断一个元素是否属于它表示的集合时会有一定的错误率(false positive rate),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设kn<m且各个哈希函数是完全随机的。当集合S={x<sub>1</sub>, x<sub>2</sub>,…,x<sub>n</sub>}的所有元素都被k个哈希函数映射到m位的位数组中时,这个位数组中某一位还是0的概率是:
![img](http://chart.apis.google.com/chart?cht=tx&chl=p'=\\left(1-\\frac{1}{m}\\right)^{kn}\\approx e^{-kn/m})
其中1/m表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的),(1-1/m)表示哈希一次没有选中这一位的概率。要把S完全映射到位数组中,需要做kn次哈希。某一位还是0意味着kn次哈希都没有选中它,因此这个概率就是(1-1/m)的kn次方。令p = e<sup>-kn/m</sup>是为了简化运算,这里用到了计算e时常用的近似:
![img](http://chart.apis.google.com/chart?cht=tx&chl=\\lim\\limits_{x\\rightarrow\\infty}\\left(1-\\frac{1}{x}\\right)^{-x}=e)
令ρ为位数组中0的比例,则ρ的数学期望E(ρ)= p’。在ρ已知的情况下,要求的错误率(false positive rate)为:
![img](http://chart.apis.google.com/chart?cht=tx&chl=(1-\\rho)^k\\approx(1-p')^k\\approx(1-p)^k)
(1-ρ)为位数组中1的比例,(1-ρ)<sup>k</sup>就表示k次哈希都刚好选中1的区域,即false positive rate。上式中第二步近似在前面已经提到了,现在来看第一步近似。p’只是ρ的数学期望,在实际中ρ的值有可能偏离它的数学期望值。M. Mitzenmacher已经证明<sup>[2]</sup> ,位数组中0的比例非常集中地分布在它的数学期望值的附近。因此,第一步的近似得以成立。分别将p和p’代入上式中,得:
![img](http://chart.apis.google.com/chart?cht=tx&chl=f'=\\left(1-\\left(1-\\frac{1}{m}\\right)^{kn}\\right)^k=(1-p')^k)
![img](http://chart.apis.google.com/chart?cht=tx&chl=f=\\left(1-e^{-kn/m}\\right)^k=(1-p)^k)
相比p’和f’,使用p和f通常在分析中更为方便。
#### 1.3、最优的哈希函数个数
既然Bloom Filter要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到0的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的0就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。
先用p和f进行计算。注意到f = exp(k ln(1 − e<sup>−kn/m</sup>)),我们令g = k ln(1 − e<sup>−kn/m</sup>),只要让g取到最小,f自然也取到最小。由于p = e<sup>-kn/m</sup>,我们可以将g写成
![img](http://chart.apis.google.com/chart?cht=tx&chl=g=-\\frac{m}{n}\\ln(p)\\ln(1-p))
根据对称性法则可以很容易看出当p = 1/2,也就是k = ln2· (m/n)时,g取得最小值。在这种情况下,最小错误率f等于(1/2)<sup>k</sup>≈ (0.6185)<sup>m/n</sup>。另外,注意到p是位数组中某一位仍是0的概率,所以p = 1/2对应着位数组中0和1各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。
需要强调的一点是,p = 1/2时错误率最小这个结果并不依赖于近似值p和f。同样对于f’ = exp(k ln(1 − (1 − 1/m)<sup>kn</sup>)),g’ = k ln(1 − (1 − 1/m)<sup>kn</sup>),p’ = (1 − 1/m)<sup>kn</sup>,我们可以将g’写成
![img](http://chart.apis.google.com/chart?cht=tx&chl=g'=\\frac{1}{n\\ln(1-1/m)}\\ln(p')\\ln(1-p'))
同样根据对称性法则可以得到当p’ = 1/2时,g’取得最小值。
#### 1.4、位数组的大小
下面我们来看看,在不超过一定错误率的情况下,Bloom Filter至少需要多少位才能表示全集中任意n个元素的集合。假设全集中共有u个元素,允许的最大错误率为є,下面我们来求位数组的位数m。
假设X为全集中任取n个元素的集合,F(X)是表示X的位数组。那么对于集合X中任意一个元素x,在s = F(X)中查询x都能得到肯定的结果,即s能够接受x。显然,由于Bloom Filter引入了错误,s能够接受的不仅仅是X中的元素,它还能够є (u - n)个false positive。因此,对于一个确定的位数组来说,它能够接受总共n + є (u - n)个元素。在n + є (u - n)个元素中,s真正表示的只有其中n个,所以一个确定的位数组可以表示
![img](http://chart.apis.google.com/chart?cht=tx&chl=C_{n%2B\\epsilon(u-n)}^n)
个集合。m位的位数组共有2<sup>m</sup>个不同的组合,进而可以推出,m位的位数组可以表示
![img](http://chart.apis.google.com/chart?cht=tx&chl=2^mC_{n%2B\\epsilon(u-n)}^n)
个集合。全集中n个元素的集合总共有
![img](http://chart.apis.google.com/chart?cht=tx&chl=C_{u}^n)
个,因此要让m位的位数组能够表示所有n个元素的集合,必须有
![img](http://chart.apis.google.com/chart?cht=tx&chl=2^mC_{n%2B\\epsilon(u-n)}^n\\geq C_{u}^n)
即:
![img](http://chart.apis.google.com/chart?cht=tx&chl=m\\geq\\log_2\\frac{C_{u}^n}{C_{n%2B\\epsilon(u-n)}^n}\\approx\\log_2\\frac{C_{u}^n}{C_{\\epsilon u}^n}\\geq\\log_2\\epsilon^{-n}=n\\log_2(1/\\epsilon))
上式中的近似前提是n和єu相比很小,这也是实际情况中常常发生的。根据上式,我们得出结论:在错误率不大于є的情况下,m至少要等于n log<sub>2</sub>(1/є)才能表示任意n个元素的集合。
上一小节中我们曾算出当k = ln2· (m/n)时错误率f最小,这时f = (1/2)<sup>k</sup>= (1/2)<sup>mln2 / n</sup>。现在令f≤є,可以推出
![img](http://chart.apis.google.com/chart?cht=tx&chl=m\\geq n\\frac{\\log_2(1/\\epsilon)}{\\ln 2}=n\\log_2\\log_2(1/\\epsilon))
这个结果比前面我们算得的下界n log<sub>2</sub>(1/є)大了log<sub>2</sub>e≈ 1.44倍。这说明在哈希函数的个数取到最优时,要让错误率不超过є,m至少需要取到最小值的1.44倍。
## 问题实例
**1、给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?**
**分析**:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。”
- 程序员如何准备面试中的算法
- 第一部分 数据结构
- 第一章 字符串
- 1.0 本章导读
- 1.1 旋转字符串
- 1.2 字符串包含
- 1.3 字符串转换成整数
- 1.4 回文判断
- 1.5 最长回文子串
- 1.6 字符串的全排列
- 1.10 本章习题
- 第二章 数组
- 2.0 本章导读
- 2.1 寻找最小的 k 个数
- 2.2 寻找和为定值的两个数
- 2.3 寻找和为定值的多个数
- 2.4 最大连续子数组和
- 2.5 跳台阶
- 2.6 奇偶排序
- 2.7 荷兰国旗
- 2.8 矩阵相乘
- 2.9 完美洗牌
- 2.15 本章习题
- 第三章 树
- 3.0 本章导读
- 3.1 红黑树
- 3.2 B树
- 3.3 最近公共祖先LCA
- 3.10 本章习题
- 第二部分 算法心得
- 第四章 查找匹配
- 4.1 有序数组的查找
- 4.2 行列递增矩阵的查找
- 4.3 出现次数超过一半的数字
- 第五章 动态规划
- 5.0 本章导读
- 5.1 最大连续乘积子串
- 5.2 字符串编辑距离
- 5.3 格子取数
- 5.4 交替字符串
- 5.10 本章习题
- 第三部分 综合演练
- 第六章 海量数据处理
- 6.0 本章导读
- 6.1 关联式容器
- 6.2 分而治之
- 6.3 simhash算法
- 6.4 外排序
- 6.5 MapReduce
- 6.6 多层划分
- 6.7 Bitmap
- 6.8 Bloom filter
- 6.9 Trie树
- 6.10 数据库
- 6.11 倒排索引
- 6.15 本章习题
- 第七章 机器学习
- 7.1 K 近邻算法
- 7.2 支持向量机
- 附录 更多题型
- 附录A 语言基础
- 附录B 概率统计
- 附录C 智力逻辑
- 附录D 系统设计
- 附录E 操作系统
- 附录F 网络协议
- sift算法
- sift算法的编译与实现
- 教你一步一步用c语言实现sift算法、上
- 教你一步一步用c语言实现sift算法、下
- 其它
- 40亿个数中快速查找
- hash表算法
- 一致性哈希算法
- 倒排索引关键词不重复Hash编码
- 傅里叶变换算法、上
- 傅里叶变换算法、下
- 后缀树
- 基于给定的文档生成倒排索引的编码与实践
- 搜索关键词智能提示suggestion
- 最小操作数
- 最短摘要的生成
- 最长公共子序列
- 木块砌墙原稿
- 附近地点搜索
- 随机取出其中之一元素