🔥码云GVP开源项目 12k star Uniapp+ElementUI 功能强大 支持多语言、二开方便! 广告
## 引入 在阎宏博士的《JAVA与模式》一书中开头是这样描述解释器(Interpreter)模式的: > 解释器模式是类的行为模式。给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器。客户端可以使用这个解释器来解释这个语言中的句子。 ## 定义 所谓解释器模式就是定义语言的文法,并且建立一个解释器来解释该语言中的句子。 在这里我们将语言理解成使用规定格式和语法的代码。 例如我经常利用正则表达式来检测某些字符串是否符合我们规定的格式。这里正则表达式就是解释器模式的应用,解释器为正则表达式定义了一个文法,如何表示一个特定的正则表达式,以及如何解释这个正则表达式。 解释器模式描述了如何构成一个简单的语言解释器,主要应用在使用面向对象语言开发的编译器中。它描述了如何为简单的语言定义一个文法,如何在该语言中表示一个句子,以及如何解释这些句子。 在解释器模式中除了能够使用文法规则来定义一个语言,还有通过一个更加直观的方法来表示——使用抽象语法树。抽象语法树能够更好地,更直观地表示一个语言的构成,每一颗抽象语法树对应一个语言实例。 ## 结构 下面就以一个示意性的系统为例,讨论解释器模式的结构。系统的结构图如下所示: ![](https://box.kancloud.cn/25c35b761e6766ff0521709b547d87ec_476x123.png) 模式所涉及的角色如下所示: * (1)抽象表达式(Expression)角色:声明一个所有的具体表达式角色都需要实现的抽象接口。这个接口主要是一个interpret()方法,称做解释操作。 * (2)终结符表达式(Terminal Expression)角色:实现了抽象表达式角色所要求的接口,主要是一个interpret()方法;文法中的每一个终结符都有一个具体终结表达式与之相对应。比如有一个简单的公式R=R1+R2,在里面R1和R2就是终结符,对应的解析R1和R2的解释器就是终结符表达式。 * (3)非终结符表达式(Nonterminal Expression)角色:文法中的每一条规则都需要一个具体的非终结符表达式,非终结符表达式一般是文法中的运算符或者其他关键字,比如公式R=R1+R2中,“+"就是非终结符,解析“+”的解释器就是一个非终结符表达式。 * (4)环境(Context)角色:这个角色的任务一般是用来存放文法中各个终结符所对应的具体值,比如R=R1+R2,我们给R1赋值100,给R2赋值200。这些信息需要存放到环境角色中,很多情况下我们使用Map来充当环境角色就足够了。 ## 代码实现 为了说明解释器模式的实现办法,这里给出一个最简单的文法和对应的解释器模式的实现,这就是模拟Java语言中对布尔表达式进行操作和求值。   在这个语言中终结符是布尔变量,也就是常量true和false。非终结符表达式包含运算符and,or和not等布尔表达式。这个简单的文法如下: ``` Expression ::= Constant | Variable | Or | And | Not     And     ::= Expression 'AND' Expression     Or     ::= Expression 'OR' Expression     Not     ::= 'NOT' Expression     Variable  ::= 任何标识符     Constant ::= 'true' | 'false' ``` 解释器模式的结构图如下所示: ![](https://box.kancloud.cn/dc1bc898bba0a3b58e44f4b792b5eb67_815x432.png) 抽象表达式角色 ``` public abstract class Expression { /** * 以环境为准,本方法解释给定的任何一个表达式 */ public abstract boolean interpret(Context ctx); /** * 检验两个表达式在结构上是否相同 */ public abstract boolean equals(Object obj); /** * 返回表达式的hash code */ public abstract int hashCode(); /** * 将表达式转换成字符串 */ public abstract String toString(); } ``` 一个Constant对象代表一个布尔常量 ``` public class Constant extends Expression{ private boolean value; public Constant(boolean value){ this.value = value; } @Override public boolean equals(Object obj) { if(obj != null && obj instanceof Constant){ return this.value == ((Constant)obj).value; } return false; } @Override public int hashCode() { return this.toString().hashCode(); } @Override public boolean interpret(Context ctx) { return value; } @Override public String toString() { return new Boolean(value).toString(); } } ``` 一个Variable对象代表一个有名变量 ``` public class Variable extends Expression { private String name; public Variable(String name){ this.name = name; } @Override public boolean equals(Object obj) { if(obj != null && obj instanceof Variable) { return this.name.equals( ((Variable)obj).name); } return false; } @Override public int hashCode() { return this.toString().hashCode(); } @Override public String toString() { return name; } @Override public boolean interpret(Context ctx) { return ctx.lookup(this); } } ``` 代表逻辑“与”操作的And类,表示由两个布尔表达式通过逻辑“与”操作给出一个新的布尔表达式的操作 ``` public class And extends Expression { private Expression left,right; public And(Expression left , Expression right){ this.left = left; this.right = right; } @Override public boolean equals(Object obj) { if(obj != null && obj instanceof And) { return left.equals(((And)obj).left) && right.equals(((And)obj).right); } return false; } @Override public int hashCode() { return this.toString().hashCode(); } @Override public boolean interpret(Context ctx) { return left.interpret(ctx) && right.interpret(ctx); } @Override public String toString() { return "(" + left.toString() + " AND " + right.toString() + ")"; } } ``` 代表逻辑“或”操作的Or类,代表由两个布尔表达式通过逻辑“或”操作给出一个新的布尔表达式的操作 ``` public class Or extends Expression { private Expression left,right; public Or(Expression left , Expression right){ this.left = left; this.right = right; } @Override public boolean equals(Object obj) { if(obj != null && obj instanceof Or) { return this.left.equals(((Or)obj).left) && this.right.equals(((Or)obj).right); } return false; } @Override public int hashCode() { return this.toString().hashCode(); } @Override public boolean interpret(Context ctx) { return left.interpret(ctx) || right.interpret(ctx); } @Override public String toString() { return "(" + left.toString() + " OR " + right.toString() + ")"; } } ``` 代表逻辑“非”操作的Not类,代表由一个布尔表达式通过逻辑“非”操作给出一个新的布尔表达式的操作 ``` public class Not extends Expression { private Expression exp; public Not(Expression exp){ this.exp = exp; } @Override public boolean equals(Object obj) { if(obj != null && obj instanceof Not) { return exp.equals( ((Not)obj).exp); } return false; } @Override public int hashCode() { return this.toString().hashCode(); } @Override public boolean interpret(Context ctx) { return !exp.interpret(ctx); } @Override public String toString() { return "(Not " + exp.toString() + ")"; } } ``` 环境(Context)类定义出从变量到布尔值的一个映射 ``` public class Context { private Map<Variable,Boolean> map = new HashMap<Variable,Boolean>(); public void assign(Variable var , boolean value){ map.put(var, new Boolean(value)); } public boolean lookup(Variable var) throws IllegalArgumentException{ Boolean value = map.get(var); if(value == null){ throw new IllegalArgumentException(); } return value.booleanValue(); } } ``` 客户端类 ``` public class Client { public static void main(String[] args) { Context ctx = new Context(); Variable x = new Variable("x"); Variable y = new Variable("y"); Constant c = new Constant(true); ctx.assign(x, false); ctx.assign(y, true); Expression exp = new Or(new And(c,x) , new And(y,new Not(x))); System.out.println("x=" + x.interpret(ctx)); System.out.println("y=" + y.interpret(ctx)); System.out.println(exp.toString() + "=" + exp.interpret(ctx)); } } ``` 运行结果如下: ``` x=false y=true ``` ## 优点 * 可扩展性比较好,灵活 * 增加了新的解释表达式的方式 * 易于实现简单文法 ## 缺点 * 可利用场景比较小 * 对于复杂的文法比较难维护 * 解释器模式会引起类膨胀 ## 适用场景 * 1、可以将一个需要解释执行的语言中的句子表示为一个抽象语法树。 * 2、一些重复出现的问题可以用一种简单的语言来进行表达。 * 3、文法较为简单。 ## 总结 * 1、在解释器模式中由于语法是由很多类表示的,所以可扩展性强。 * 2、虽然解释器的可扩展性强,但是如果语法规则的数目太大的时候,该模式可能就会变得异常复杂。所以解释器模式适用于文法较为简单的。 * 3、解释器模式可以处理脚本语言和编程语言。常用于解决某一特定类型的问题频繁发生情况。