## 引言
由于CPU和主存的处理速度上存在一定差别,为了匹配这种差距,提升计算机能力,人们在CPU和主存之间增加了多层高速缓存。每个CPU会有L1、L2甚至L3缓存,在多核计算机中会有多个CPU,那么就会存在多套缓存,那么这多套缓存之间的数据就可能出现不一致的现象。为了解决这个问题,有了内存模型。内存模型定义了共享内存系统中多线程程序读写操作行为的规范。通过这些规则来规范对内存的读写操作,从而保证指令执行的正确性。
那么,内存模型到底是怎么保证缓存一致性的呢?
接下来我们试着回答这个问题。首先,缓存一致性是由于引入缓存而导致的问题,所以,这是很多CPU厂商必须解决的问题。为了解决前面提到的缓存数据不一致的问题,人们提出过很多方案,通常来说有以下2种方案:
* 1、通过在总线加LOCK#锁的方式。
* 2、通过缓存一致性协议(Cache Coherence Protocol)。
在早期的CPU当中,是通过在总线上加LOCK#锁的形式来解决缓存不一致的问题。因为CPU和其他部件进行通信都是通过总线来进行的,如果对总线加LOCK#锁的话,也就是说阻塞了其他CPU对其他部件访问(如内存),从而使得只能有一个CPU能使用这个变量的内存。在总线上发出了LCOK#锁的信号,那么只有等待这段代码完全执行完毕之后,其他CPU才能从其内存读取变量,然后进行相应的操作。这样就解决了缓存不一致的问题。
但是由于在锁住总线期间,其他CPU无法访问内存,会导致效率低下。因此出现了第二种解决方案,通过缓存一致性协议来解决缓存一致性问题。
## 缓存一致性协议
缓存一致性协议(Cache Coherence Protocol),最出名的就是Intel 的MESI协议,MESI协议保证了每个缓存中使用的共享变量的副本是一致的。
MESI的核心的思想是:当CPU写数据时,如果发现操作的变量是共享变量,即在其他CPU中也存在该变量的副本,会发出信号通知其他CPU将该变量的缓存行置为无效状态,因此当其他CPU需要读取这个变量时,发现自己缓存中缓存该变量的缓存行是无效的,那么它就会从内存重新读取。
> 在MESI协议中,每个缓存可能有有4个状态,它们分别是:
> M(Modified):这行数据有效,数据被修改了,和内存中的数据不一致,数据只存在于本Cache中。
> E(Exclusive):这行数据有效,数据和内存中的数据一致,数据只存在于本Cache中。
> S(Shared):这行数据有效,数据和内存中的数据一致,数据存在于很多Cache中。
> I(Invalid):这行数据无效。
关于MESI的更多细节这里就不详细介绍了,读者只要知道,MESI是一种比较常用的缓存一致性协议,他可以用来解决缓存之间的数据一致性问题就可以了。
但是,值得注意的是,传统的MESI协议中有两个行为的执行成本比较大。
一个是将某个Cache Line标记为Invalid状态,另一个是当某Cache Line当前状态为Invalid时写入新的数据。所以CPU通过Store Buffer和Invalidate Queue组件来降低这类操作的延时。
如图:
![](https://box.kancloud.cn/24aed0e21f3b5c2c506874ded8a37682_439x427.png)
当一个CPU进行写入时,首先会给其它CPU发送Invalid消息,然后把当前写入的数据写入到Store Buffer中。然后异步在某个时刻真正的写入到Cache中。
当前CPU核如果要读Cache中的数据,需要先扫描Store Buffer之后再读取Cache。
但是此时其它CPU核是看不到当前核的Store Buffer中的数据的,要等到Store Buffer中的数据被刷到了Cache之后才会触发失效操作。
而当一个CPU核收到Invalid消息时,会把消息写入自身的Invalidate Queue中,随后异步将其设为Invalid状态。
和Store Buffer不同的是,当前CPU核心使用Cache时并不扫描Invalidate Queue部分,所以可能会有极短时间的脏读问题。
所以,为了解决缓存的一致性问题,比较典型的方案是MESI缓存一致性协议。
MESI协议,可以保证缓存的一致性,但是无法保证实时性。
## 内存模型
内存模型(Memory Model)如果扩展开来说的话,通常指的是内存一致性模型(Memory Sequential Consistency Model)
前面我们提到过缓存一致性,这里又要说内存一致性,不是故意要把读者搞蒙,而是希望通过对比让读者更加清楚。
* 缓存一致性(Cache Coherence),解决是多个缓存副本之间的数据的一致性问题。
* 内存一致性(Memory Consistency),保证的是多线程程序访问内存时可以读到什么值。
我们首先看以下程序:
```
初始:x=0 y=0
Thread1:
S1:x=1
L1:r1=y
Thread2:
S2:y=2
L2:r2=x
```
其中,S1、S2、L1、L2是语句代号(S表示Store,L表示Load);r1和r2是两个寄存器。x和y是两个不同的内存变量。两个线程执行完之后,r1和r2可能是什么值?
注意到线程是并发、交替执行的,下面是可能的执行顺序和相应结果:
```
S1 L1 S2 L2 那么r1=0 r2=2
S1 S2 L1 L2 那么r1=2 r2=1
S2 L2 S1 L1 那么r1=2 r2=0
```
这些都是意料之内、情理之中的。但是在x86体系结构下,很可能得到r1=0 r2=0这样的结果。
如果没有Memory Consistency,程序员写的程序代码的输出结果是不确定的。
因此,Memory Consistency就是程序员(编程语言)、编译器、CPU间的一种协议。这个协议保证了程序访问内存时会得到什么值。
简单点说,内存一致性,就是保证并发场景下的程序运行结果和程序员预期是一样的(当然,要通过加锁等方式),包括的就是并发编程中的原子性、有序性和可见性。而缓存一致性说的就是并发编程中的可见性。
在很多内存模型的实现中,关于缓存一致性的保证都是通过硬件层面缓存一致性协议来保证的。需要注意的是,这里提到的内存模型,是计算机内存模型,而非Java内存模型。
## 总结
缓存一致性问题。硬件层面的问题,指的是由于多核计算机中有多套缓存,各个缓存之间的数据不一致性问题。
PS:这里还需要再重复一遍,Java多线程中,每个线程都有自己的工作内存,需要和主存进行交互。这里的工作内存和计算机硬件的缓存并不是一回事儿,只是可以相互类比。所以,并发编程的可见性问题,是因为各个线程之间的本地内存数据不一致导致的,和计算机缓存并无关系。
缓存一致性协议。用来解决缓存一致性问题的,常用的是MESI协议。
内存一致性模型。屏蔽计算机硬件问题,主要来解决并发编程中的原子性、有序性和一致性问题。
实现内存一致性模型的时候可能会用到缓存一致性模型。
- java
- 设计模式
- 设计模式总览
- 设计原则
- 工厂方法模式
- 抽象工厂模式
- 单例模式
- 建造者模式
- 原型模式
- 适配器模式
- 装饰者模式
- 代理模式
- 外观模式
- 桥接模式
- 组合模式
- 享元模式
- 策略模式
- 模板方法模式
- 观察者模式
- 迭代子模式
- 责任链模式
- 命令模式
- 备忘录模式
- 状态模式
- 访问者模式
- 中介者模式
- 解释器模式
- 附录
- JVM相关
- JVM内存结构
- Java虚拟机的内存组成以及堆内存介绍
- Java堆和栈
- 附录-数据结构的堆栈和内存分配的堆区栈区的区别
- Java内存之Java 堆
- Java内存之虚拟机和内存区域概述
- Java 内存之方法区和运行时常量池
- Java 内存之直接内存(堆外内存)
- JAVA内存模型
- Java内存模型介绍
- 内存模型如何解决缓存一致性问题
- 深入理解Java内存模型——基础
- 深入理解Java内存模型——重排序
- 深入理解Java内存模型——顺序一致性
- 深入理解Java内存模型——volatile
- 深入理解Java内存模型——锁
- 深入理解Java内存模型——final
- 深入理解Java内存模型——总结
- 内存可见性
- JAVA对象模型
- JVM内存结构 VS Java内存模型 VS Java对象模型
- Java的对象模型
- Java的对象头
- HotSpot虚拟机
- HotSpot虚拟机对象探秘
- 深入分析Java的编译原理
- Java虚拟机的锁优化技术
- 对象和数组并不是都在堆上分配内存的
- 垃圾回收
- JVM内存管理及垃圾回收
- JVM 垃圾回收器工作原理及使用实例介绍
- JVM内存回收理论与实现(对象存活的判定)
- JVM参数及调优
- CMS GC日志分析
- JVM实用参数(一)JVM类型以及编译器模式
- JVM实用参数(二)参数分类和即时(JIT)编译器诊断
- JVM实用参数(三)打印所有XX参数及值
- JVM实用参数(四)内存调优
- JVM实用参数(五)新生代垃圾回收
- JVM实用参数(六) 吞吐量收集器
- JVM实用参数(七)CMS收集器
- JVM实用参数(八)GC日志
- Java性能调优原则
- JVM 优化经验总结
- 面试题整理
- 面试题1
- java日志规约
- Spring安全
- OAtuth2.0简介
- Spring Session 简介(一)
- Spring Session 简介(二)
- Spring Session 简介(三)
- Spring Security 简介(一)
- Spring Security 简介(二)
- Spring Security 简介(三)
- Spring Security 简介(四)
- Spring Security 简介(五)
- Spring Security Oauth2 (一)
- Spring Security Oauth2 (二)
- Spring Security Oauth2 (三)
- SpringBoot
- Shiro
- Shiro和Spring Security对比
- Shiro简介
- Session、Cookie和Cache
- Web Socket
- Spring WebFlux