原文出处——>[Android系统进程间通信Binder机制在应用程序框架层的Java接口源代码分析](http://blog.csdn.net/luoshengyang/article/details/6642463)
在前面几篇文章中,我们详细介绍了Android系统进程间通信机制Binder的原理,并且深入分析了系统提供的Binder运行库和驱动程序的源代码。细心的读者会发现,这几篇文章分析的Binder接口都是基于C/C++语言来实现的,但是我们在编写应用程序都是基于Java语言的,那么,我们如何使用Java语言来使用系统的Binder机制来进行进程间通信呢?这就是本文要介绍的Android系统应用程序框架层的用Java语言来实现的Binder接口了。
熟悉Android系统的读者,应该能想到应用程序框架中的基于Java语言的Binder接口是通过JNI来调用基于C/C++语言的Binder运行库来为Java应用程序提供进程间通信服务的了。JNI在Android系统中用得相当普遍,SDK中的Java接口API很多只是简单地通过JNI来调用底层的C/C++运行库从而为应用程序服务的。
这里,我们仍然是通过具体的例子来说明Binder机制在应用程序框架层中的Java接口,主要就是Service Manager、Server和Client这三个角色的实现了。通常,在应用程序中,我们都是把Server实现为Service的形式,并且通过IServiceManager.addService接口来把这个Service添加到Service Manager,Client也是通过IServiceManager.getService接口来获得Service接口,接着就可以使用这个Service提供的功能了,这个与运行时库的Binder接口是一致的。
前面我们学习Android硬件抽象层时,曾经在应用程序框架层中提供了一个硬件访问服务HelloService,这个Service运行在一个独立的进程中充当Server的角色,使用这个Service的Client运行在另一个进程中,它们之间就是通过Binder机制来通信的了。这里,我们就使用HelloService这个例子来分析Android系统进程间通信Binder机制在应用程序框架层的Java接口源代码。所以希望读者在阅读下面的内容之前,先了解一下前面在Ubuntu上为Android系统的Application Frameworks层增加硬件访问服务这篇文章。
这篇文章通过五个情景来学习Android系统进程间通信Binder机制在应用程序框架层的Java接口:
1. 获取Service Manager的Java远程接口的过程;
2. HelloService接口的定义;
3. HelloService的启动过程;
4. Client获取HelloService的Java远程接口的过程;
5. Client通过HelloService的Java远程接口来使用HelloService提供的服务的过程。
**一. 获取Service Manager的Java远程接口**
我们要获取的Service Manager的Java远程接口是一个ServiceManagerProxy对象的IServiceManager接口。我们现在就来看看ServiceManagerProxy类是长什么样子的:
![](http://hi.csdn.net/attachment/201107/28/0_1311872523tLjI.gif)
这里可以看出,ServiceManagerProxy类实现了IServiceManager接口,IServiceManager提供了getService和addService两个成员函数来管理系统中的Service。从ServiceManagerProxy类的构造函数可以看出,它需要一个BinderProxy对象的IBinder接口来作为参数。因此,要获取Service Manager的Java远程接口ServiceManagerProxy,首先要有一个BinderProxy对象。下面将会看到这个BinderProxy对象是如何获得的。
再来看一下是通过什么路径来获取Service Manager的Java远程接口ServiceManagerProxy的。这个主角就是ServiceManager了,我们也先看一下ServiceManager是长什么样子的:
![](http://hi.csdn.net/attachment/201107/28/0_1311872907IM3i.gif)
ServiceManager类有一个静态成员函数getIServiceManager,它的作用就是用来获取Service Manager的Java远程接口了,而这个函数又是通过ServiceManagerNative来获取Service Manager的Java远程接口的。
接下来,我们就看一下ServiceManager.getIServiceManager这个函数的实现,这个函数定义在**frameworks/base/core/java/android/os/ServiceManager.java**文件中:
~~~
public final class ServiceManager {
......
private static IServiceManager sServiceManager;
......
private static IServiceManager getIServiceManager() {
if (sServiceManager != null) {
return sServiceManager;
}
// Find the service manager
sServiceManager = ServiceManagerNative.asInterface(BinderInternal.getContextObject());
return sServiceManager;
}
......
}
~~~
如果其静态成员变量sServiceManager尚未创建,那么就调用ServiceManagerNative.asInterface函数来创建。在调用ServiceManagerNative.asInterface函数之前,首先要通过BinderInternal.getContextObject函数来获得一个BinderProxy对象。
我们来看一下BinderInternal.getContextObject的实现,这个函数定义在**frameworks/base/core/java/com/android/internal/os/BinderInternal.java**文件中:
~~~
public class BinderInternal {
......
/**
* Return the global "context object" of the system. This is usually
* an implementation of IServiceManager, which you can use to find
* other services.
*/
public static final native IBinder getContextObject();
......
}
~~~
这里可以看出,BinderInternal.getContextObject是一个JNI方法,它实现在**frameworks/base/core/jni/android_util_Binder.cpp**文件中:
~~~
static jobject android_os_BinderInternal_getContextObject(JNIEnv* env, jobject clazz)
{
sp<IBinder> b = ProcessState::self()->getContextObject(NULL);
return javaObjectForIBinder(env, b);
}
~~~
这里看到我们熟悉的ProcessState::self()->getContextObject函数,具体可以参考浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文。ProcessState::self()->getContextObject函数返回一个BpBinder对象,它的句柄值是0,即下面语句:
~~~
sp<IBinder> b = ProcessState::self()->getContextObject(NULL);
~~~
相当于是:
~~~
sp<IBinder> b = new BpBinder(0);
~~~
接着调用javaObjectForIBinder把这个BpBinder对象转换成一个BinderProxy对象:
~~~
jobject javaObjectForIBinder(JNIEnv* env, const sp<IBinder>& val)
{
if (val == NULL) return NULL;
if (val->checkSubclass(&gBinderOffsets)) {
// One of our own!
jobject object = static_cast<JavaBBinder*>(val.get())->object();
//printf("objectForBinder %p: it's our own %p!\n", val.get(), object);
return object;
}
// For the rest of the function we will hold this lock, to serialize
// looking/creation of Java proxies for native Binder proxies.
AutoMutex _l(mProxyLock);
// Someone else's... do we know about it?
jobject object = (jobject)val->findObject(&gBinderProxyOffsets);
if (object != NULL) {
jobject res = env->CallObjectMethod(object, gWeakReferenceOffsets.mGet);
if (res != NULL) {
LOGV("objectForBinder %p: found existing %p!\n", val.get(), res);
return res;
}
LOGV("Proxy object %p of IBinder %p no longer in working set!!!", object, val.get());
android_atomic_dec(&gNumProxyRefs);
val->detachObject(&gBinderProxyOffsets);
env->DeleteGlobalRef(object);
}
object = env->NewObject(gBinderProxyOffsets.mClass, gBinderProxyOffsets.mConstructor);
if (object != NULL) {
LOGV("objectForBinder %p: created new %p!\n", val.get(), object);
// The proxy holds a reference to the native object.
env->SetIntField(object, gBinderProxyOffsets.mObject, (int)val.get());
val->incStrong(object);
// The native object needs to hold a weak reference back to the
// proxy, so we can retrieve the same proxy if it is still active.
jobject refObject = env->NewGlobalRef(
env->GetObjectField(object, gBinderProxyOffsets.mSelf));
val->attachObject(&gBinderProxyOffsets, refObject,
jnienv_to_javavm(env), proxy_cleanup);
// Note that a new object reference has been created.
android_atomic_inc(&gNumProxyRefs);
incRefsCreated(env);
}
return object;
}
~~~
在介绍这个函数之前,先来看两个变量gBinderOffsets和gBinderProxyOffsets的定义。
先看gBinderOffsets的定义:
~~~
static struct bindernative_offsets_t
{
// Class state.
jclass mClass;
jmethodID mExecTransact;
// Object state.
jfieldID mObject;
} gBinderOffsets;
~~~
简单来说,gBinderOffsets变量是用来记录上面第二个类图中的Binder类的相关信息的,它是在注册Binder类的JNI方法的int_register_android_os_Binder函数初始化的:
~~~
const char* const kBinderPathName = "android/os/Binder";
static int int_register_android_os_Binder(JNIEnv* env)
{
jclass clazz;
clazz = env->FindClass(kBinderPathName);
LOG_FATAL_IF(clazz == NULL, "Unable to find class android.os.Binder");
gBinderOffsets.mClass = (jclass) env->NewGlobalRef(clazz);
gBinderOffsets.mExecTransact
= env->GetMethodID(clazz, "execTransact", "(IIII)Z");
assert(gBinderOffsets.mExecTransact);
gBinderOffsets.mObject
= env->GetFieldID(clazz, "mObject", "I");
assert(gBinderOffsets.mObject);
return AndroidRuntime::registerNativeMethods(
env, kBinderPathName,
gBinderMethods, NELEM(gBinderMethods));
}
~~~
再来看gBinderProxyOffsets的定义:
~~~
static struct binderproxy_offsets_t
{
// Class state.
jclass mClass;
jmethodID mConstructor;
jmethodID mSendDeathNotice;
// Object state.
jfieldID mObject;
jfieldID mSelf;
} gBinderProxyOffsets;
~~~
简单来说,gBinderProxyOffsets是用来变量是用来记录上面第一个图中的BinderProxy类的相关信息的,它是在注册BinderProxy类的JNI方法的int_register_android_os_BinderProxy函数初始化的:
~~~
const char* const kBinderProxyPathName = "android/os/BinderProxy";
static int int_register_android_os_BinderProxy(JNIEnv* env)
{
jclass clazz;
clazz = env->FindClass("java/lang/ref/WeakReference");
LOG_FATAL_IF(clazz == NULL, "Unable to find class java.lang.ref.WeakReference");
gWeakReferenceOffsets.mClass = (jclass) env->NewGlobalRef(clazz);
gWeakReferenceOffsets.mGet
= env->GetMethodID(clazz, "get", "()Ljava/lang/Object;");
assert(gWeakReferenceOffsets.mGet);
clazz = env->FindClass("java/lang/Error");
LOG_FATAL_IF(clazz == NULL, "Unable to find class java.lang.Error");
gErrorOffsets.mClass = (jclass) env->NewGlobalRef(clazz);
clazz = env->FindClass(kBinderProxyPathName);
LOG_FATAL_IF(clazz == NULL, "Unable to find class android.os.BinderProxy");
gBinderProxyOffsets.mClass = (jclass) env->NewGlobalRef(clazz);
gBinderProxyOffsets.mConstructor
= env->GetMethodID(clazz, "<init>", "()V");
assert(gBinderProxyOffsets.mConstructor);
gBinderProxyOffsets.mSendDeathNotice
= env->GetStaticMethodID(clazz, "sendDeathNotice", "(Landroid/os/IBinder$DeathRecipient;)V");
assert(gBinderProxyOffsets.mSendDeathNotice);
gBinderProxyOffsets.mObject
= env->GetFieldID(clazz, "mObject", "I");
assert(gBinderProxyOffsets.mObject);
gBinderProxyOffsets.mSelf
= env->GetFieldID(clazz, "mSelf", "Ljava/lang/ref/WeakReference;");
assert(gBinderProxyOffsets.mSelf);
return AndroidRuntime::registerNativeMethods(
env, kBinderProxyPathName,
gBinderProxyMethods, NELEM(gBinderProxyMethods));
}
~~~
回到前面的javaObjectForIBinder函数中,下面这段代码:
~~~
if (val->checkSubclass(&gBinderOffsets)) {
// One of our own!
jobject object = static_cast<JavaBBinder*>(val.get())->object();
//printf("objectForBinder %p: it's our own %p!\n", val.get(), object);
return object;
}
~~~
前面说过,这里传进来的参数是一个BpBinder的指针,而BpBinder::checkSubclass继承于父类IBinder::checkSubclass,它什么也不做就返回false。
于是函数继续往下执行:
~~~
jobject object = (jobject)val->findObject(&gBinderProxyOffsets);
~~~
由于这个BpBinder对象是第一创建,它里面什么对象也没有,因此,这里返回的object为NULL。
于是函数又继续往下执行:
~~~
object = env->NewObject(gBinderProxyOffsets.mClass, gBinderProxyOffsets.mConstructor);
~~~
这里,就创建了一个BinderProxy对象了。创建了之后,要把这个BpBinder对象和这个BinderProxy对象关联起来:
~~~
env->SetIntField(object, gBinderProxyOffsets.mObject, (int)val.get());
~~~
就是通过BinderProxy.mObject成员变量来关联的了,BinderProxy.mObject成员变量记录了这个BpBinder对象的地址。
接下去,还要把它放到BpBinder里面去,下次就要使用时,就可以在上一步调用BpBinder::findObj把它找回来了:
~~~
val->attachObject(&gBinderProxyOffsets, refObject,
jnienv_to_javavm(env), proxy_cleanup);
~~~
最后,就把这个BinderProxy返回到android_os_BinderInternal_getContextObject函数,最终返回到最开始的ServiceManager.getIServiceManager函数中来了,于是,我们就获得一个BinderProxy对象了。
回到ServiceManager.getIServiceManager中,从下面语句返回:
~~~
sServiceManager = ServiceManagerNative.asInterface(BinderInternal.getContextObject());
~~~
相当于是:
~~~
sServiceManager = ServiceManagerNative.asInterface(new BinderProxy());
~~~
接下去就是调用ServiceManagerNative.asInterface函数了,这个函数定义在**frameworks/base/core/java/android/os/ServiceManagerNative.java**文件中:
~~~
public abstract class ServiceManagerNative ......
{
......
static public IServiceManager asInterface(IBinder obj)
{
if (obj == null) {
return null;
}
IServiceManager in =
(IServiceManager)obj.queryLocalInterface(descriptor);
if (in != null) {
return in;
}
return new ServiceManagerProxy(obj);
}
......
}
~~~
这里的参数obj是一个BinderProxy对象,它的queryLocalInterface函数返回null。因此,最终以这个BinderProxy对象为参数创建一个ServiceManagerProxy对象。
返回到ServiceManager.getIServiceManager中,从下面语句返回:
~~~
sServiceManager = ServiceManagerNative.asInterface(new BinderProxy());
~~~
就相当于是:
~~~
sServiceManager = new ServiceManagerProxy(new BinderProxy());
~~~
于是,我们的目标终于完成了。
总结一下,就是在Java层,我们拥有了一个Service Manager远程接口ServiceManagerProxy,而这个ServiceManagerProxy对象在JNI层有一个句柄值为0的BpBinder对象与之通过gBinderProxyOffsets关联起来。
这样获取Service Manager的Java远程接口的过程就完成了。
**二. HelloService接口的定义**
前面我们在学习Android系统的硬件抽象层(HAL)时,在在Ubuntu上为Android系统的Application Frameworks层增加硬件访问服务这篇文章中,我们编写了一个硬件服务HelloService,它的服务接口定义在**frameworks/base/core/java/android/os/IHelloService.aidl**文件中:
~~~
package android.os;
interface IHelloService
{
void setVal(int val);
int getVal();
}
~~~
这个服务接口很简单,只有两个函数,分别用来读写硬件寄存器。
注意,这是一个aidl文件,编译后会生成一个IHelloService.java。我们来看一下这个文件的内容隐藏着什么奥秘,可以这么神奇地支持进程间通信。
~~~
/*
* This file is auto-generated. DO NOT MODIFY.
* Original file: frameworks/base/core/java/android/os/IHelloService.aidl
*/
package android.os;
public interface IHelloService extends android.os.IInterface
{
/** Local-side IPC implementation stub class. */
public static abstract class Stub extends android.os.Binder implements android.os.IHelloService
{
private static final java.lang.String DESCRIPTOR = "android.os.IHelloService";
/** Construct the stub at attach it to the interface. */
public Stub()
{
this.attachInterface(this, DESCRIPTOR);
}
/**
* Cast an IBinder object into an android.os.IHelloService interface,
* generating a proxy if needed.
*/
public static android.os.IHelloService asInterface(android.os.IBinder obj)
{
if ((obj==null)) {
return null;
}
android.os.IInterface iin = (android.os.IInterface)obj.queryLocalInterface(DESCRIPTOR);
if (((iin!=null)&&(iin instanceof android.os.IHelloService))) {
return ((android.os.IHelloService)iin);
}
return new android.os.IHelloService.Stub.Proxy(obj);
}
public android.os.IBinder asBinder()
{
return this;
}
@Override
public boolean onTransact(int code, android.os.Parcel data, android.os.Parcel reply, int flags) throws android.os.RemoteException
{
switch (code)
{
case INTERFACE_TRANSACTION:
{
reply.writeString(DESCRIPTOR);
return true;
}
case TRANSACTION_setVal:
{
data.enforceInterface(DESCRIPTOR);
int _arg0;
_arg0 = data.readInt();
this.setVal(_arg0);
reply.writeNoException();
return true;
}
case TRANSACTION_getVal:
{
data.enforceInterface(DESCRIPTOR);
int _result = this.getVal();
reply.writeNoException();
reply.writeInt(_result);
return true;
}
}
return super.onTransact(code, data, reply, flags);
}
private static class Proxy implements android.os.IHelloService
{
private android.os.IBinder mRemote;
Proxy(android.os.IBinder remote)
{
mRemote = remote;
}
public android.os.IBinder asBinder()
{
return mRemote;
}
public java.lang.String getInterfaceDescriptor()
{
return DESCRIPTOR;
}
public void setVal(int val) throws android.os.RemoteException
{
android.os.Parcel _data = android.os.Parcel.obtain();
android.os.Parcel _reply = android.os.Parcel.obtain();
try {
_data.writeInterfaceToken(DESCRIPTOR);
_data.writeInt(val);
mRemote.transact(Stub.TRANSACTION_setVal, _data, _reply, 0);
_reply.readException();
}
finally {
_reply.recycle();
_data.recycle();
}
}
public int getVal() throws android.os.RemoteException
{
android.os.Parcel _data = android.os.Parcel.obtain();
android.os.Parcel _reply = android.os.Parcel.obtain();
int _result;
try {
_data.writeInterfaceToken(DESCRIPTOR);
mRemote.transact(Stub.TRANSACTION_getVal, _data, _reply, 0);
_reply.readException();
_result = _reply.readInt();
}
finally {
_reply.recycle();
_data.recycle();
}
return _result;
}
}
static final int TRANSACTION_setVal = (android.os.IBinder.FIRST_CALL_TRANSACTION + 0);
static final int TRANSACTION_getVal = (android.os.IBinder.FIRST_CALL_TRANSACTION + 1);
}
public void setVal(int val) throws android.os.RemoteException;
public int getVal() throws android.os.RemoteException;
}
~~~
这里我们可以看到IHelloService.aidl这个文件编译后的真面目,原来就是根据IHelloService接口的定义生成相应的Stub和Proxy类,这个就是我们熟悉的Binder机制的内容了,即实现这个HelloService的Server必须继续于这里的IHelloService.Stub类,而这个HelloService的远程接口就是这里的IHelloService.Stub.Proxy对象获得的IHelloService接口。接下来的内容,我们就可以看到IHelloService.Stub和IHelloService.Stub.Proxy是怎么创建或者使用的。
**三. HelloService的启动过程**
在讨论HelloService的启动过程之前,我们先来看一下实现HelloService接口的Server是怎么定义的。
回忆在Ubuntu上为Android系统的Application Frameworks层增加硬件访问服务一文,我们在frameworks/base/services/java/com/android/server目录下新增了一个HelloService.java文件:
~~~
package com.android.server;
import android.content.Context;
import android.os.IHelloService;
import android.util.Slog;
public class HelloService extends IHelloService.Stub {
private static final String TAG = "HelloService";
HelloService() {
init_native();
}
public void setVal(int val) {
setVal_native(val);
}
public int getVal() {
return getVal_native();
}
private static native boolean init_native();
private static native void setVal_native(int val);
private static native int getVal_native();
}
~~~
这里,我们可以看到,HelloService继续了IHelloService.Stub类,它通过本地方法调用实现了getVal和setVal两个函数。我们不关心这两个函数的具体实现,有兴趣的读者可以参考在Ubuntu上为Android系统的Application Frameworks层增加硬件访问服务一文。
有了HelloService这个Server类后,下一步就是考虑怎么样把它启动起来了。在frameworks/base/services/java/com/android/server/SystemServer.java文件中,定义了SystemServer类。SystemServer对象是在系统启动的时候创建的,它被创建的时候会启动一个线程来创建HelloService,并且把它添加到Service Manager中去。
我们来看一下这部份的代码:
~~~
class ServerThread extends Thread {
......
@Override
public void run() {
......
Looper.prepare();
......
try {
Slog.i(TAG, "Hello Service");
ServiceManager.addService("hello", new HelloService());
} catch (Throwable e) {
Slog.e(TAG, "Failure starting Hello Service", e);
}
......
Looper.loop();
......
}
}
......
public class SystemServer
{
......
/**
* This method is called from Zygote to initialize the system. This will cause the native
* services (SurfaceFlinger, AudioFlinger, etc..) to be started. After that it will call back
* up into init2() to start the Android services.
*/
native public static void init1(String[] args);
......
public static final void init2() {
Slog.i(TAG, "Entered the Android system server!");
Thread thr = new ServerThread();
thr.setName("android.server.ServerThread");
thr.start();
}
......
}
~~~
这里,我们可以看到,在ServerThread.run函数中,执行了下面代码把HelloService添加到Service Manager中去。这里我们关注把HelloService添加到Service Manager中去的代码:
~~~
try {
Slog.i(TAG, "Hello Service");
ServiceManager.addService("hello", new HelloService());
} catch (Throwable e) {
Slog.e(TAG, "Failure starting Hello Service", e);
}
~~~
通过调用ServiceManager.addService把一个HelloService实例添加到Service Manager中去。
我们先来看一下HelloService的创建过程:
~~~
new HelloService();
~~~
这个语句会调用HelloService类的构造函数,而HelloService类继承于IHelloService.Stub类,IHelloService.Stub类又继承了Binder类,因此,最后会调用Binder类的构造函数:
~~~
public class Binder implements IBinder {
......
private int mObject;
......
public Binder() {
init();
......
}
private native final void init();
......
}
~~~
这里调用了一个JNI方法init来初始化这个Binder对象,这个JNI方法定义在**frameworks/base/core/jni/android_util_Binder.cpp**文件中:
~~~
static void android_os_Binder_init(JNIEnv* env, jobject clazz)
{
JavaBBinderHolder* jbh = new JavaBBinderHolder(env, clazz);
if (jbh == NULL) {
jniThrowException(env, "java/lang/OutOfMemoryError", NULL);
return;
}
LOGV("Java Binder %p: acquiring first ref on holder %p", clazz, jbh);
jbh->incStrong(clazz);
env->SetIntField(clazz, gBinderOffsets.mObject, (int)jbh);
}
~~~
它实际上只做了一件事情,就是创建一个JavaBBinderHolder对象jbh,然后把这个对象的地址保存在上面的Binder类的mObject成员变量中,后面我们会用到。
回到ServerThread.run函数中,我们再来看一下ServiceManager.addService函数的实现:
~~~
public final class ServiceManager {
......
private static IServiceManager sServiceManager;
......
public static void addService(String name, IBinder service) {
try {
getIServiceManager().addService(name, service);
} catch (RemoteException e) {
Log.e(TAG, "error in addService", e);
}
}
......
}
~~~
这里的getIServiceManager函数我们在前面已经分析过了,它返回的是一个ServiceManagerProxy对象的IServiceManager接口。因此,我们进入到ServiceManagerProxy.addService中去看看:
~~~
class ServiceManagerProxy implements IServiceManager {
public ServiceManagerProxy(IBinder remote) {
mRemote = remote;
}
......
public void addService(String name, IBinder service)
throws RemoteException {
Parcel data = Parcel.obtain();
Parcel reply = Parcel.obtain();
data.writeInterfaceToken(IServiceManager.descriptor);
data.writeString(name);
data.writeStrongBinder(service);
mRemote.transact(ADD_SERVICE_TRANSACTION, data, reply, 0);
reply.recycle();
data.recycle();
}
......
private IBinder mRemote;
}
~~~
这里的Parcel类是用Java来实现的,它跟我们前面几篇文章介绍Binder机制时提到的用C++实现的Parcel类的作用是一样的,即用来在两个进程之间传递数据。
这里我们关注是如何把参数service写到data这个Parcel对象中去的:
~~~
data.writeStrongBinder(service);
~~~
我们来看看Parcel.writeStrongBinder函数的实现:
~~~
public final class Parcel {
......
/**
* Write an object into the parcel at the current dataPosition(),
* growing dataCapacity() if needed.
*/
public final native void writeStrongBinder(IBinder val);
......
}
~~~
这里的writeStrongBinder函数又是一个JNI方法,它定义在frameworks/base/core/jni/android_util_Binder.cpp文件中:
~~~
static void android_os_Parcel_writeStrongBinder(JNIEnv* env, jobject clazz, jobject object)
{
Parcel* parcel = parcelForJavaObject(env, clazz);
if (parcel != NULL) {
const status_t err = parcel->writeStrongBinder(ibinderForJavaObject(env, object));
if (err != NO_ERROR) {
jniThrowException(env, "java/lang/OutOfMemoryError", NULL);
}
}
}
~~~
这里的clazz参数是一个Java语言实现的Parcel对象,通过parcelForJavaObject把它转换成C++语言实现的Parcel对象。这个函数的实现我们就不看了,有兴趣的读者可以研究一下,这个函数也是实现在frameworks/base/core/jni/android_util_Binder.cpp这个文件中。
这里的object参数是一个Java语言实现的Binder对象,在调用C++语言实现的Parcel::writeStrongBinder把这个对象写入到parcel对象时,首先通过ibinderForJavaObject函数把这个Java语言实现的Binder对象转换为C++语言实现的JavaBBinderHolder对象:
~~~
sp<IBinder> ibinderForJavaObject(JNIEnv* env, jobject obj)
{
if (obj == NULL) return NULL;
if (env->IsInstanceOf(obj, gBinderOffsets.mClass)) {
JavaBBinderHolder* jbh = (JavaBBinderHolder*)
env->GetIntField(obj, gBinderOffsets.mObject);
return jbh != NULL ? jbh->get(env) : NULL;
}
if (env->IsInstanceOf(obj, gBinderProxyOffsets.mClass)) {
return (IBinder*)
env->GetIntField(obj, gBinderProxyOffsets.mObject);
}
LOGW("ibinderForJavaObject: %p is not a Binder object", obj);
return NULL;
}
~~~
我们知道,这里的obj参数是一个Binder类的实例,因此,这里会进入到第一个if语句中去。
在前面创建HelloService对象,曾经在调用到HelloService的父类Binder中,曾经在JNI层创建了一个JavaBBinderHolder对象,然后把这个对象的地址保存在Binder类的mObject成员变量中,因此,这里把obj对象的mObject成员变量强制转为JavaBBinderHolder对象。
到了这里,这个函数的功课还未完成,还剩下最后关键的一步:
~~~
return jbh != NULL ? jbh->get(env) : NULL;
~~~
这里就是jbh->get这个语句了。
在JavaBBinderHolder类中,有一个成员变量mBinder,它的类型为JavaBBinder,而JavaBBinder类继承于BBinder类。在前面学习Binder机制的C++语言实现时,我们在Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析这篇文章中,曾经介绍过,IPCThreadState类负责与Binder驱动程序进行交互,它把从Binder驱动程序读出来的请求作简单的处理后,最后把这个请求扔给BBinder的onTransact函数来进一步处理。
这里,我们就是要把JavaBBinderHolder里面的JavaBBinder类型Binder实体添加到Service Manager中去,以便使得这个HelloService有Client来请求服务时,由Binder驱动程序来唤醒这个Server线程,进而调用这个JavaBBinder类型Binder实体的onTransact函数来进一步处理,这个函数我们在后面会继续介绍。
先来看一下JavaBBinderHolder::get函数的实现:
~~~
class JavaBBinderHolder : public RefBase
{
......
JavaBBinderHolder(JNIEnv* env, jobject object)
: mObject(object)
{
......
}
......
sp<JavaBBinder> get(JNIEnv* env)
{
AutoMutex _l(mLock);
sp<JavaBBinder> b = mBinder.promote();
if (b == NULL) {
b = new JavaBBinder(env, mObject);
mBinder = b;
......
}
return b;
}
......
jobject mObject;
wp<JavaBBinder> mBinder;
};
~~~
这里是第一次调用get函数,因此,会创建一个JavaBBinder对象,并且保存在mBinder成员变量中。注意,这里的mObject就是上面创建的HelloService对象了,这是一个Java对象。这个HelloService对象最终也会保存在JavaBBinder对象的成员变量mObject中。
回到android_os_Parcel_writeStrongBinder函数中,下面这个语句:
~~~
const status_t err = parcel->writeStrongBinder(ibinderForJavaObject(env, object));
~~~
相当于是:
~~~
const status_t err = parcel->writeStrongBinder((JavaBBinderHodler*)(obj.mObject));
~~~
因此,这里的效果相当于是写入了一个JavaBBinder类型的Binder实体到parcel中去。这与我们前面介绍的Binder机制的C++实现是一致的。
接着,再回到ServiceManagerProxy.addService这个函数中,最后它通过其成员变量mRemote来执行进程间通信操作。前面我们在介绍如何获取Service Manager远程接口时提到,这里的mRemote成员变量实际上是一个BinderProxy对象,因此,我们再来看看BinderProxy.transact函数的实现:
~~~
final class BinderProxy implements IBinder {
......
public native boolean transact(int code, Parcel data, Parcel reply,
int flags) throws RemoteException;
......
}
~~~
这里的transact成员函数又是一个JNI方法,它定义在frameworks/base/core/jni/android_util_Binder.cpp文件中:
~~~
static jboolean android_os_BinderProxy_transact(JNIEnv* env, jobject obj,
jint code, jobject dataObj,
jobject replyObj, jint flags)
{
......
Parcel* data = parcelForJavaObject(env, dataObj);
if (data == NULL) {
return JNI_FALSE;
}
Parcel* reply = parcelForJavaObject(env, replyObj);
if (reply == NULL && replyObj != NULL) {
return JNI_FALSE;
}
IBinder* target = (IBinder*)
env->GetIntField(obj, gBinderProxyOffsets.mObject);
if (target == NULL) {
jniThrowException(env, "java/lang/IllegalStateException", "Binder has been finalized!");
return JNI_FALSE;
}
......
status_t err = target->transact(code, *data, reply, flags);
......
if (err == NO_ERROR) {
return JNI_TRUE;
} else if (err == UNKNOWN_TRANSACTION) {
return JNI_FALSE;
}
signalExceptionForError(env, obj, err);
return JNI_FALSE;
}
~~~
这里传进来的参数dataObj和replyObj是一个Java接口实现的Parcel类,由于这里是JNI层,需要把它转换为C++实现的Parcel类,它们就是通过我们前面说的parcelForJavaObject函数进行转换的。
前面我们在分析如何获取Service Manager远程接口时,曾经说到,在JNI层中,创建了一个BpBinder对象,它的句柄值为0,它的地址保存在gBinderProxyOffsets.mObject中,因此,这里通过下面语句得到这个BpBinder对象的IBinder接口:
~~~
IBinder* target = (IBinder*)
env->GetIntField(obj, gBinderProxyOffsets.mObject);
~~~
有了这个IBinder接口后,就和我们前面几篇文章介绍Binder机制的C/C++实现一致了。
最后,通过BpBinder::transact函数进入到Binder驱动程序,然后Binder驱动程序唤醒Service Manager响应这个ADD_SERVICE_TRANSACTION请求:
~~~
status_t err = target->transact(code, *data, reply, flags);
~~~
具体可以参考Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析一文。需要注意的是,这里的data包含了一个JavaBBinderHolder类型的Binder实体对象,它就代表了我们上面创建的HelloService。Service Manager收到这个ADD_SERVICE_TRANSACTION请求时,就会把这个Binder实体纳入到自己内部进行管理。
这样,实现HelloService的Server的启动过程就完成了。
**四. Client获取HelloService的Java远程接口的过程**
前面我们在学习Android系统硬件抽象层(HAL)时,在在Ubuntu上为Android系统内置Java应用程序测试Application Frameworks层的硬件服务这篇文章中,我们创建了一个应用程序,这个应用程序作为一个Client角色,借助Service Manager这个Java远程接口来获得HelloService的远程接口,进而调用HelloService提供的服务。
我们看看它是如何借助Service Manager这个Java远程接口来获得HelloService的远程接口的。在Hello这个Activity的onCreate函数,通过IServiceManager.getService函数来获得HelloService的远程接口:
~~~
public class Hello extends Activity implements OnClickListener {
......
private IHelloService helloService = null;
......
@Override
public void onCreate(Bundle savedInstanceState) {
helloService = IHelloService.Stub.asInterface(
ServiceManager.getService("hello"));
}
......
}
~~~
我们先来看ServiceManager.getService的实现。前面我们说过,这里实际上是调用了ServiceManagerProxy.getService函数:
~~~
class ServiceManagerProxy implements IServiceManager {
public ServiceManagerProxy(IBinder remote) {
mRemote = remote;
}
......
public IBinder getService(String name) throws RemoteException {
Parcel data = Parcel.obtain();
Parcel reply = Parcel.obtain();
data.writeInterfaceToken(IServiceManager.descriptor);
data.writeString(name);
mRemote.transact(GET_SERVICE_TRANSACTION, data, reply, 0);
IBinder binder = reply.readStrongBinder();
reply.recycle();
data.recycle();
return binder;
}
......
private IBinder mRemote;
}
~~~
最终通过mRemote.transact来执行实际操作。我们在前面已经介绍过了,这里的mRemote实际上是一个BinderProxy对象,它的transact成员函数是一个JNI方法,实现在frameworks/base/core/jni/android_util_Binder.cpp文件中的android_os_BinderProxy_transact函数中。
这个函数前面我们已经看到了,这里就不再列出来了。不过,当这个函数从:
~~~
status_t err = target->transact(code, *data, reply, flags);
~~~
这里的reply变量里面就包括了一个HelloService的引用了。注意,这里的reply变量就是我们在ServiceManagerProxy.getService函数里面传进来的参数reply,它是一个Parcel对象。
回到ServiceManagerProxy.getService函数中,从下面语句返回:
~~~
mRemote.transact(GET_SERVICE_TRANSACTION, data, reply, 0);
~~~
接着,就通过下面语句将这个HelloService的引用读出来:
~~~
IBinder binder = reply.readStrongBinder();
~~~
我们看看Parcel.readStrongBinder的实现:
~~~
public final class Parcel {
......
/**
* Read an object from the parcel at the current dataPosition().
*/
public final native IBinder readStrongBinder();
......
}
~~~
它也是一个JNI方法,实现在**frameworks/base/core/jni/android_util_Binder.cpp**文件中:
~~~
static jobject android_os_Parcel_readStrongBinder(JNIEnv* env, jobject clazz)
{
Parcel* parcel = parcelForJavaObject(env, clazz);
if (parcel != NULL) {
return javaObjectForIBinder(env, parcel->readStrongBinder());
}
return NULL;
}
~~~
这里首先把Java语言实现的Parcel对象class转换成C++语言实现的Parcel对象parcel,接着,通过parcel->readStrongBinder函数来获得一个Binder引用。
我们在前面学习Binder机制时,在Android系统进程间通信(IPC)机制Binder中的Client获得Server远程接口过程源代码分析这篇文章中,曾经分析过这个函数,它最终返回来的是一个BpBinder对象,因此,下面的语句:
~~~
return javaObjectForIBinder(env, parcel->readStrongBinder());
~~~
就相当于是:
~~~
return javaObjectForIBinder(env, new BpBinder(handle));
~~~
这里的handle就是HelloService这个Binder实体在Client进程中的句柄了,它是由Binder驱动程序设置的,上层不用关心它的值具体是多少。至于javaObjectForIBinder这个函数,我们前面介绍如何获取Service Manager的Java远程接口时已经有详细介绍,这里就不累述了,它的作用就是创建一个BinderProxy对象,并且把刚才获得的BpBinder对象的地址保存在这个BinderProxy对象的mObject成员变量中。
最后返回到Hello.onCreate函数中,从下面语句返回:
~~~
helloService = IHelloService.Stub.asInterface(
ServiceManager.getService("hello"))
~~~
就相当于是:
~~~
helloService = IHelloService.Stub.asInterface(new BinderProxy()));
~~~
回忆一下前面介绍IHelloService接口的定义时,IHelloService.Stub.asInterface是这样定义的:
~~~
public interface IHelloService extends android.os.IInterface
{
/** Local-side IPC implementation stub class. */
public static abstract class Stub extends android.os.Binder implements android.os.IHelloService
{
......
public static android.os.IHelloService asInterface(android.os.IBinder obj)
{
if ((obj==null)) {
return null;
}
android.os.IInterface iin = (android.os.IInterface)obj.queryLocalInterface(DESCRIPTOR);
if (((iin!=null)&&(iin instanceof android.os.IHelloService))) {
return ((android.os.IHelloService)iin);
}
return new android.os.IHelloService.Stub.Proxy(obj);
}
......
}
}
~~~
这里的obj是一个BinderProxy对象,它的queryLocalInterface返回null,于是调用下面语句获得HelloService的远程接口:
~~~
return new android.os.IHelloService.Stub.Proxy(obj);
~~~
相当于是:
~~~
return new android.os.IHelloService.Stub.Proxy(new BinderProxy());
~~~
这样,我们就获得了HelloService的远程接口了,它实质上是一个实现了IHelloService接口的IHelloService.Stub.Proxy对象。
**五. Client通过HelloService的Java远程接口来使用HelloService提供的服务的过程**
上面介绍的Hello这个Activity获得了HelloService的远程接口后,就可以使用它的服务了。
我们以使用IHelloService.getVal函数为例详细说明。在Hello::onClick函数中调用了IHelloService.getVal函数:
~~~
public class Hello extends Activity implements OnClickListener {
......
@Override
public void onClick(View v) {
if(v.equals(readButton)) {
int val = helloService.getVal();
......
}
else if(v.equals(writeButton)) {
......
}
else if(v.equals(clearButton)) {
......
}
}
......
}
~~~
通知前面的分析,我们知道,这里的helloService接口实际上是一个IHelloService.Stub.Proxy对象,因此,我们进入到IHelloService.Stub.Proxy类的getVal函数中:
~~~
public interface IHelloService extends android.os.IInterface
{
/** Local-side IPC implementation stub class. */
public static abstract class Stub extends android.os.Binder implements android.os.IHelloService
{
......
private static class Proxy implements android.os.IHelloService
{
private android.os.IBinder mRemote;
......
public int getVal() throws android.os.RemoteException
{
android.os.Parcel _data = android.os.Parcel.obtain();
android.os.Parcel _reply = android.os.Parcel.obtain();
int _result;
try {
_data.writeInterfaceToken(DESCRIPTOR);
mRemote.transact(Stub.TRANSACTION_getVal, _data, _reply, 0);
_reply.readException();
_result = _reply.readInt();
}
finally {
_reply.recycle();
_data.recycle();
}
return _result;
}
}
......
static final int TRANSACTION_getVal = (android.os.IBinder.FIRST_CALL_TRANSACTION + 1);
}
......
}
~~~
这里我们可以看出,实际上是通过mRemote.transact来请求HelloService执行TRANSACTION_getVal操作。这里的mRemote是一个BinderProxy对象,这是我们在前面获取HelloService的Java远程接口的过程中创建的。
BinderProxy.transact函数是一个JNI方法,我们在前面已经介绍过了,这里不再累述。最过调用到Binder驱动程序,Binder驱动程序唤醒HelloService这个Server。前面我们在介绍HelloService的启动过程时,曾经提到,HelloService这个Server线程被唤醒之后,就会调用JavaBBinder类的onTransact函数:
~~~
class JavaBBinder : public BBinder
{
JavaBBinder(JNIEnv* env, jobject object)
: mVM(jnienv_to_javavm(env)), mObject(env->NewGlobalRef(object))
{
......
}
......
virtual status_t onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags = 0)
{
JNIEnv* env = javavm_to_jnienv(mVM);
......
jboolean res = env->CallBooleanMethod(mObject, gBinderOffsets.mExecTransact,
code, (int32_t)&data, (int32_t)reply, flags);
......
return res != JNI_FALSE ? NO_ERROR : UNKNOWN_TRANSACTION;
}
......
JavaVM* const mVM;
jobject const mObject;
};
~~~
前面我们在介绍HelloService的启动过程时,曾经介绍过,JavaBBinder类里面的成员变量mObject就是HelloService类的一个实例对象了。因此,这里通过语句:
~~~
jboolean res = env->CallBooleanMethod(mObject, gBinderOffsets.mExecTransact,
code, (int32_t)&data, (int32_t)reply, flags);
~~~
就调用了HelloService.execTransact函数,而HelloService.execTransact函数继承了Binder类的execTransact函数:
~~~
public class Binder implements IBinder {
......
// Entry point from android_util_Binder.cpp's onTransact
private boolean execTransact(int code, int dataObj, int replyObj, int flags) {
Parcel data = Parcel.obtain(dataObj);
Parcel reply = Parcel.obtain(replyObj);
// theoretically, we should call transact, which will call onTransact,
// but all that does is rewind it, and we just got these from an IPC,
// so we'll just call it directly.
boolean res;
try {
res = onTransact(code, data, reply, flags);
} catch (RemoteException e) {
reply.writeException(e);
res = true;
} catch (RuntimeException e) {
reply.writeException(e);
res = true;
} catch (OutOfMemoryError e) {
RuntimeException re = new RuntimeException("Out of memory", e);
reply.writeException(re);
res = true;
}
reply.recycle();
data.recycle();
return res;
}
}
~~~
这里又调用了onTransact函数来作进一步处理。由于HelloService类继承了IHelloService.Stub类,而IHelloService.Stub类实现了onTransact函数,HelloService类没有实现,因此,最终调用了IHelloService.Stub.onTransact函数:
~~~
public interface IHelloService extends android.os.IInterface
{
/** Local-side IPC implementation stub class. */
public static abstract class Stub extends android.os.Binder implements android.os.IHelloService
{
......
@Override
public boolean onTransact(int code, android.os.Parcel data, android.os.Parcel reply, int flags) throws android.os.RemoteException
{
switch (code)
{
......
case TRANSACTION_getVal:
{
data.enforceInterface(DESCRIPTOR);
int _result = this.getVal();
reply.writeNoException();
reply.writeInt(_result);
return true;
}
}
return super.onTransact(code, data, reply, flags);
}
......
}
}
~~~
函数最终又调用了HelloService.getVal函数:
~~~
public class HelloService extends IHelloService.Stub {
......
public int getVal() {
return getVal_native();
}
......
private static native int getVal_native();
}
~~~
最终,经过层层返回,就回到IHelloService.Stub.Proxy.getVal函数中来了,从下面语句返回:
~~~
mRemote.transact(Stub.TRANSACTION_getVal, _data, _reply, 0);
~~~
并将结果读出来:
~~~
_result = _reply.readInt();
~~~
最后将这个结果返回到Hello.onClick函数中。
这样,Client通过HelloService的Java远程接口来使用HelloService提供的服务的过程就介绍完了。
Android系统进程间通信Binder机制在应用程序框架层的Java接口源代码分析也完成了,整个Binder机制的学习就结束了。
重新学习Android系统进程间通信Binder机制,请回到Android进程间通信(IPC)机制Binder简要介绍和学习计划一文。
- 前言
- Android组件设计思想
- Android源代码开发和调试环境搭建
- Android源代码下载和编译
- Android源代码情景分析法
- Android源代码调试分析法
- 手把手教你为手机编译ROM
- 在Ubuntu上下载、编译和安装Android最新源代码
- 在Ubuntu上下载、编译和安装Android最新内核源代码(Linux Kernel)
- 如何单独编译Android源代码中的模块
- 在Ubuntu上为Android系统编写Linux内核驱动程序
- 在Ubuntu上为Android系统内置C可执行程序测试Linux内核驱动程序
- 在Ubuntu上为Android增加硬件抽象层(HAL)模块访问Linux内核驱动程序
- 在Ubuntu为Android硬件抽象层(HAL)模块编写JNI方法提供Java访问硬件服务接口
- 在Ubuntu上为Android系统的Application Frameworks层增加硬件访问服务
- 在Ubuntu上为Android系统内置Java应用程序测试Application Frameworks层的硬件服务
- Android源代码仓库及其管理工具Repo分析
- Android编译系统简要介绍和学习计划
- Android编译系统环境初始化过程分析
- Android源代码编译命令m/mm/mmm/make分析
- Android系统镜像文件的打包过程分析
- 从CM刷机过程和原理分析Android系统结构
- Android系统架构概述
- Android系统整体架构
- android专用驱动
- Android硬件抽象层HAL
- Android应用程序组件
- Android应用程序框架
- Android用户界面架构
- Android虚拟机之Dalvik虚拟机
- Android硬件抽象层
- Android硬件抽象层(HAL)概要介绍和学习计划
- Android专用驱动
- Android Logger驱动系统
- Android日志系统驱动程序Logger源代码分析
- Android应用程序框架层和系统运行库层日志系统源代码分析
- Android日志系统Logcat源代码简要分析
- Android Binder驱动系统
- Android进程间通信(IPC)机制Binder简要介绍和学习计划
- 浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路
- 浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路
- Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析
- Android系统进程间通信(IPC)机制Binder中的Client获得Server远程接口过程源代码分析
- Android系统进程间通信Binder机制在应用程序框架层的Java接口源代码分析
- Android Ashmem驱动系统
- Android系统匿名共享内存Ashmem(Anonymous Shared Memory)简要介绍和学习计划
- Android系统匿名共享内存Ashmem(Anonymous Shared Memory)驱动程序源代码分析
- Android系统匿名共享内存Ashmem(Anonymous Shared Memory)在进程间共享的原理分析
- Android系统匿名共享内存(Anonymous Shared Memory)C++调用接口分析
- Android应用程序进程管理
- Android应用程序进程启动过程的源代码分析
- Android系统进程Zygote启动过程的源代码分析
- Android系统默认Home应用程序(Launcher)的启动过程源代码分析
- Android应用程序消息机制
- Android应用程序消息处理机制(Looper、Handler)分析
- Android应用程序线程消息循环模型分析
- Android应用程序输入事件分发和处理机制
- Android应用程序键盘(Keyboard)消息处理机制分析
- Android应用程序UI架构
- Android系统的开机画面显示过程分析
- Android帧缓冲区(Frame Buffer)硬件抽象层(HAL)模块Gralloc的实现原理分析
- SurfaceFlinger
- Android系统Surface机制的SurfaceFlinger服务
- SurfaceFlinger服务简要介绍和学习计划
- 启动过程分析
- 对帧缓冲区(Frame Buffer)的管理分析
- 线程模型分析
- 渲染应用程序UI的过程分析
- Android应用程序与SurfaceFlinger服务的关系
- 概述和学习计划
- 连接过程分析
- 共享UI元数据(SharedClient)的创建过程分析
- 创建Surface的过程分析
- 渲染Surface的过程分析
- Android应用程序窗口(Activity)
- 实现框架简要介绍和学习计划
- 运行上下文环境(Context)的创建过程分析
- 窗口对象(Window)的创建过程分析
- 视图对象(View)的创建过程分析
- 与WindowManagerService服务的连接过程分析
- 绘图表面(Surface)的创建过程分析
- 测量(Measure)、布局(Layout)和绘制(Draw)过程分析
- WindowManagerService
- WindowManagerService的简要介绍和学习计划
- 计算Activity窗口大小的过程分析
- 对窗口的组织方式分析
- 对输入法窗口(Input Method Window)的管理分析
- 对壁纸窗口(Wallpaper Window)的管理分析
- 计算窗口Z轴位置的过程分析
- 显示Activity组件的启动窗口(Starting Window)的过程分析
- 切换Activity窗口(App Transition)的过程分析
- 显示窗口动画的原理分析
- Android控件TextView的实现原理分析
- Android视图SurfaceView的实现原理分析
- Android应用程序UI硬件加速渲染
- 简要介绍和学习计划
- 环境初始化过程分析
- 预加载资源地图集服务(Asset Atlas Service)分析
- Display List构建过程分析
- Display List渲染过程分析
- 动画执行过程分析
- Android应用程序资源管理框架
- Android资源管理框架(Asset Manager)
- Asset Manager 简要介绍和学习计划
- 编译和打包过程分析
- Asset Manager的创建过程分析
- 查找过程分析
- Dalvik虚拟机和ART虚拟机
- Dalvik虚拟机
- Dalvik虚拟机简要介绍和学习计划
- Dalvik虚拟机的启动过程分析
- Dalvik虚拟机的运行过程分析
- Dalvik虚拟机JNI方法的注册过程分析
- Dalvik虚拟机进程和线程的创建过程分析
- Dalvik虚拟机垃圾收集机制简要介绍和学习计划
- Dalvik虚拟机Java堆创建过程分析
- Dalvik虚拟机为新创建对象分配内存的过程分析
- Dalvik虚拟机垃圾收集(GC)过程分析
- ART虚拟机
- Android ART运行时无缝替换Dalvik虚拟机的过程分析
- Android运行时ART简要介绍和学习计划
- Android运行时ART加载OAT文件的过程分析
- Android运行时ART加载类和方法的过程分析
- Android运行时ART执行类方法的过程分析
- ART运行时垃圾收集机制简要介绍和学习计划
- ART运行时Java堆创建过程分析
- ART运行时为新创建对象分配内存的过程分析
- ART运行时垃圾收集(GC)过程分析
- ART运行时Compacting GC简要介绍和学习计划
- ART运行时Compacting GC堆创建过程分析
- ART运行时Compacting GC为新创建对象分配内存的过程分析
- ART运行时Semi-Space(SS)和Generational Semi-Space(GSS)GC执行过程分析
- ART运行时Mark-Compact( MC)GC执行过程分析
- ART运行时Foreground GC和Background GC切换过程分析
- Android安全机制
- SEAndroid安全机制简要介绍和学习计划
- SEAndroid安全机制框架分析
- SEAndroid安全机制中的文件安全上下文关联分析
- SEAndroid安全机制中的进程安全上下文关联分析
- SEAndroid安全机制对Android属性访问的保护分析
- SEAndroid安全机制对Binder IPC的保护分析
- 从NDK在非Root手机上的调试原理探讨Android的安全机制
- APK防反编译
- Android视频硬解稳定性问题探讨和处理
- Android系统的智能指针(轻量级指针、强指针和弱指针)的实现原理分析
- Android应用程序安装过程源代码分析
- Android应用程序启动过程源代码分析
- 四大组件源代码分析
- Activity
- Android应用程序的Activity启动过程简要介绍和学习计划
- Android应用程序内部启动Activity过程(startActivity)的源代码分析
- 解开Android应用程序组件Activity的"singleTask"之谜
- Android应用程序在新的进程中启动新的Activity的方法和过程分析
- Service
- Android应用程序绑定服务(bindService)的过程源代码分析
- ContentProvider
- Android应用程序组件Content Provider简要介绍和学习计划
- Android应用程序组件Content Provider应用实例
- Android应用程序组件Content Provider的启动过程源代码分析
- Android应用程序组件Content Provider在应用程序之间共享数据的原理分析
- Android应用程序组件Content Provider的共享数据更新通知机制分析
- BroadcastReceiver
- Android系统中的广播(Broadcast)机制简要介绍和学习计划
- Android应用程序注册广播接收器(registerReceiver)的过程分析
- Android应用程序发送广播(sendBroadcast)的过程分析