[原文](https://docs.spring.io/spring/docs/5.0.6.RELEASE/spring-framework-reference/core.html#beans-beanname)
[toc]
bean的定义本质上就是创建对象的清单。当询问容器指定name的bean时,容器查询清单,使用bean定义封装的配置元数据来创建或获取实际对象。
如果使用xml的配置元数据,则元素`<bean/>`的属性class指定类型的对象实例.这个class属性,其实是`BeanDefinition`类的内部属性,通常是必需的(例外情况参考[工厂方法实例对象](https://docs.spring.io/spring/docs/5.0.6.RELEASE/spring-framework-reference/core.html#beans-factory-class-instance-factory-method) 和[子类实例](https://docs.spring.io/spring/docs/5.0.6.RELEASE/spring-framework-reference/core.html#beans-child-bean-definitions)).使用class的两种方式:
* 典型的,容器通过反射直接调用构造方法创建对象,和直接使用java操作符`new`效果类似.
* 指定包含静态工厂方法来创建对象的实际类,比较少用的场景,容器调用类的静态工厂方法创建bean,这个bean可以是类本身实例,也可以是其他类实例
> *内部类命名*
> 对于静态内部类的定义,需要使用二元名称.例如在包`com.example`下有个类`Foo`,并且包含静态内部类`Bar`,定义bean的class属性的值就是:`com.example.Foo$Bar`.
>注意使用$字符来分割内部类和外部类
>
## Instantiation with a constructor
当你通过构造函数来创建bean时,所有普通类都能被spring使用和兼容.即,开发的类不需要实现特定接口或用特定方式编码,只要指定bean的class就足够了.然而,根据特定bean使用的ioc容器类型,你可能需要默认的无参构造方法.
spring 容器可以管理任何你想要它管理的类,不局限于纯javaBeans.大多数spring使用者更喜欢无参构造函数的bean和恰当的get,set模式设置属性.你的容器中也可以有非bean风格的类.例如,你需要使用一个传统的绝对不符合javaBean规范的连接池,spring也可以很好的管理它.
基于xml格式的配置元数据,可以如下指定bean的class
~~~xml
<bean id="exampleBean" class="examples.ExampleBean"/>
<bean name="anotherExample" class="examples.ExampleBeanTwo"/>
~~~
需要给构造方法提供参数,或者在对象实例化后设置属性,参考[依赖注入](https://docs.spring.io/spring/docs/5.0.6.RELEASE/spring-framework-reference/core.html#beans-factory-collaborators)
## Instantiation with a static factory method
当定义的bean由静态工厂方法创建时,使用`class`指定包含静态工厂方法的类(不是工厂方法返回对象的类),属性`factory-method`指定工厂方法.你可以调用这个方法返回一个活动的对象,随后把它当做是通过构造方法创建的.这种bean定义方式的用途是调用历史代码的静态工厂方法.
下面的bean定义,指定bean是由工厂方法创建的.仅指定了含有工厂方法的类,并没有指定返回对象的类型.在这个例子中,`createInstance()`必须是静态方法.
~~~xml
<bean id="clientService"
class="examples.ClientService"
factory-method="createInstance"/>
~~~
~~~java
public class ClientService {
private static ClientService clientService = new ClientService();
private ClientService() {}
public static ClientService createInstance() {
return clientService;
}
}
~~~
## Instantiation using an instance factory method
类似静态工厂方法实例化,实例工厂方法实例化就是调用容器中已存在的bean的非静态方法来创建bean.使用这种机制,`class`属性为空,使用`factory-bean`属性指定容器中bean的name,这个bean包含创建对象的实例方法,`factory-method`指定工厂方法.
~~~xml
<!-- 工厂类, 包含方法 createClientServiceInstance() -->
<bean id="serviceLocator" class="examples.DefaultServiceLocator">
</bean>
<!-- 工厂类创建的bean -->
<bean id="clientService"
factory-bean="serviceLocator"
factory-method="createClientServiceInstance"/>
~~~
~~~java
public class DefaultServiceLocator {
private static ClientService clientService = new ClientServiceImpl();
public ClientService createClientServiceInstance() {
return clientService;
}
}
~~~
一个工厂类可以包含多个工厂方法:
~~~xml
<bean id="serviceLocator" class="examples.DefaultServiceLocator">
</bean>
<bean id="clientService"
factory-bean="serviceLocator"
factory-method="createClientServiceInstance"/>
<bean id="accountService"
factory-bean="serviceLocator"
factory-method="createAccountServiceInstance"/>
~~~
~~~java
public class DefaultServiceLocator {
private static ClientService clientService = new ClientServiceImpl();
private static AccountService accountService = new AccountServiceImpl();
public ClientService createClientServiceInstance() {
return clientService;
}
public AccountService createAccountServiceInstance() {
return accountService;
}
}
~~~
- 正确打开本书的姿势
- 第一部分 Core
- 1. Ioc container
- 1.1. Introduction to the Spring IoC container and beans
- 1.2. Container overview
- 1.2.1. Configuration metadata
- 1.2.2. Instantiating a container
- 1.2.3. Using the container
- 1.3. Bean overview
- 1.3.1. Naming beans
- 1.3.2. Instantiating beans
- 1.4. Dependencies
- 1.4.1. Dependency Injection
- 1.4.2. Dependencies and configuration in detail
- 1.4.3. Using depends-on
- 1.4.4. Lazy-initialized beans
- 1.4.5. Autowiring collaborators
- 1.4.6. Method injection
- 1.5 Bean Scopes
- 1.6. Customizing the nature of a bean TODO
- 1.7. Bean definition inheritance TODO
- 1.8. Container Extension Points TODO
- 1.9. Annotation-based container configuration
- 1.9.1. @Required
- 1.9.2. @Autowired
- 1.9.3. Fine-tuning annotation-based autowiring with @Primary
- 1.9.4. Fine-tuning annotation-based autowiring with qualifiers TODO
- 1.9.5. Using generics as autowiring qualifiers TODO
- 1.9.6. CustomAutowireConfigurer TODO
- 1.10. Classpath scanning and managed components
- 1.10.1. @Component and further stereotype annotations
- 1.11. Using JSR 330 Standard Annotations TODO
- 1.12. Java-based container configuration
- 1.12.1. Basic concepts: @Bean and @Configuration
- 1.12.2. Instantiating the Spring container using AnnotationConfigApplicationContext
- 2. Resources
- 2.1. Introduction
- 2.2. The Resource interface
- 2.3. Built-in Resource implementations
- 2.3.1. UrlResource
- 2.3.2. ClassPathResource
- 2.3.3. FileSystemResource
- 2.3.4. ServletContextResource
- 2.3.5. InputStreamResource
- 2.3.6. ByteArrayResource
- 2.4. The ResourceLoader
- 2.5. The ResourceLoaderAware interface
- 2.6. Resources as dependencies
- 2.7. Application contexts and Resource paths
- 2.7.1. Constructing application contexts
- 2.7.2. Wildcards in application context constructor resource paths
- 2.7.3. FileSystemResource caveats
- 3. Validation, Data Binding, and Type Conversion
- 4. Spring Expression Language (SpEL)
- 5. Aspect Oriented Programming with Spring
- 5.1. Introduction
- 5.1.1. AOP concepts
- 5.1.2. Spring AOP capabilities and goals
- 5.1.3. AOP Proxies
- 5.2. @AspectJ support
- 5.2.1. Enabling @AspectJ Support
- 5.2.2. Declaring an aspect
- 5.2.3. Declaring a pointcut
- 5.2.4. Declaring advice
- 5.2.5. Introductions TODO
- 5.2.6. Aspect instantiation models TODO
- 5.2.7. Example
- 5.3. Schema-based AOP support TODO
- 5.4. Choosing which AOP declaration style to use TODO
- 5.5. Mixing aspect types TODO
- 5.6. Proxying mechanisms
- 5.6.1. Understanding AOP proxies
- 5.7. Programmatic creation of @AspectJ Proxies
- 5.8. Using AspectJ with Spring applications
- 5.8.1. Using AspectJ to dependency inject domain objects with Spring
- 5.8.2. Other Spring aspects for AspectJ
- 第二部分 Testing
- 第三部分 Data Access
- 1. Transaction Management
- 1.1. Introduction to Spring Framework transaction management
- 1.2 Advantages of the Spring Framework’s transaction support model
- 1.2.1. Global transactions
- 1.2.2. Local transactions
- 1.2.3. Spring Framework’s consistent programming model
- 1.3. Understanding the Spring Framework transaction abstraction
- 1.4. Synchronizing resources with transactions
- 1.4.1. High-level synchronization approach
- 1.4.2. Low-level synchronization approach
- 1.4.3. TransactionAwareDataSourceProxy
- 1.5. Declarative transaction management
- 1.5.1. Understanding the Spring Framework’s declarative transaction implementation
- 1.5.2. Example of declarative transaction implementation
- 1.5.3. Rolling back a declarative transaction
- 1.5.4. Configuring different transactional semantics for different beans
- 1.5.5. tx:advice元素的 settings
- 1.5.6. Using @Transactional
- 1.5.7. Transaction propagation
- 1.5.8. Advising transactional operations
- 1.5.9. Using @Transactional with AspectJ TODO
- 第四部分 web servlet
- 第五部分 Web Reactive
- 第六部分 Integration
- 第七部分 Languages