ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
# NLMS算法的模拟测试 相关文档: [_自适应滤波器和NLMS模拟_](fast_nlms_in_python.html) 测试NLMS在系统辨识、信号预测和信号均衡方面的应用。 ``` # -*- coding: utf-8 -*- # filename: nlms_test.py import numpy as np import pylab as pl import nlms_numpy import scipy.signal # 随机产生FIR滤波器的系数,长度为length, 延时为delay, 指数衰减 def make_path(delay, length): path_length = length - delay h = np.zeros(length, np.float64) h[delay:] = np.random.standard_normal(path_length) * np.exp( np.linspace(0, -4, path_length) ) h /= np.sqrt(np.sum(h*h)) return h def plot_converge(y, u, label=""): size = len(u) avg_number = 200 e = np.power(y[:size] - u, 2) tmp = e[:int(size/avg_number)*avg_number] tmp.shape = -1, avg_number avg = np.average( tmp, axis=1 ) pl.plot(np.linspace(0, size, len(avg)), 10*np.log10(avg), linewidth=2.0, label=label) def diff_db(h0, h): return 10*np.log10(np.sum((h0-h)*(h0-h)) / np.sum(h0*h0)) # 用NLMS进行系统辨识的模拟, 未知系统的传递函数为h0, 使用的参照信号为x def sim_system_identify(nlms, x, h0, step_size, noise_scale): y = np.convolve(x, h0) d = y + np.random.standard_normal(len(y)) * noise_scale # 添加白色噪声的外部干扰 h = np.zeros(len(h0), np.float64) # 自适应滤波器的长度和未知系统长度相同,初始值为0 u = nlms( x, d, h, step_size ) return y, u, h def system_identify_test1(): h0 = make_path(32, 256) # 随机产生一个未知系统的传递函数 x = np.random.standard_normal(10000) # 参照信号为白噪声 y, u, h = sim_system_identify(nlms_numpy.nlms, x, h0, 0.5, 0.1) print diff_db(h0, h) pl.figure( figsize=(8, 6) ) pl.subplot(211) pl.subplots_adjust(hspace=0.4) pl.plot(h0, c="r") pl.plot(h, c="b") pl.title(u"未知系统和收敛后的滤波器的系数比较") pl.subplot(212) plot_converge(y, u) pl.title(u"自适应滤波器收敛特性") pl.xlabel("Iterations (samples)") pl.ylabel("Converge Level (dB)") pl.show() def system_identify_test2(): h0 = make_path(32, 256) # 随机产生一个未知系统的传递函数 x = np.random.standard_normal(20000) # 参照信号为白噪声 pl.figure(figsize=(8,4)) for step_size in np.arange(0.1, 1.0, 0.2): y, u, h = sim_system_identify(nlms_numpy.nlms, x, h0, step_size, 0.1) plot_converge(y, u, label=u"μ=%s" % step_size) pl.title(u"更新系数和收敛特性的关系") pl.xlabel("Iterations (samples)") pl.ylabel("Converge Level (dB)") pl.legend() pl.show() def system_identify_test3(): h0 = make_path(32, 256) # 随机产生一个未知系统的传递函数 x = np.random.standard_normal(20000) # 参照信号为白噪声 pl.figure(figsize=(8,4)) for noise_scale in [0.05, 0.1, 0.2, 0.4, 0.8]: y, u, h = sim_system_identify(nlms_numpy.nlms, x, h0, 0.5, noise_scale) plot_converge(y, u, label=u"noise=%s" % noise_scale) pl.title(u"外部干扰和收敛特性的关系") pl.xlabel("Iterations (samples)") pl.ylabel("Converge Level (dB)") pl.legend() pl.show() def sim_signal_equation(nlms, x, h0, D, step_size, noise_scale): d = x[:-D] x = x[D:] y = np.convolve(x, h0)[:len(x)] h = np.zeros(2*len(h0)+2*D, np.float64) y += np.random.standard_normal(len(y)) * noise_scale u = nlms(y, d, h, step_size) return h def signal_equation_test1(): h0 = make_path(5, 64) D = 128 length = 20000 data = np.random.standard_normal(length+D) h = sim_signal_equation(nlms_numpy.nlms, data, h0, D, 0.5, 0.1) pl.figure(figsize=(8,4)) pl.plot(h0, label=u"未知系统") pl.plot(h, label=u"自适应滤波器") pl.plot(np.convolve(h0, h), label=u"二者卷积") pl.title(u"信号均衡演示") pl.legend() w0, H0 = scipy.signal.freqz(h0, worN = 1000) w, H = scipy.signal.freqz(h, worN = 1000) pl.figure(figsize=(8,4)) pl.plot(w0, 20*np.log10(np.abs(H0)), w, 20*np.log10(np.abs(H))) pl.title(u"未知系统和自适应滤波器的振幅特性") pl.xlabel(u"圆频率") pl.ylabel(u"振幅(dB)") pl.show() signal_equation_test1() ```