## 30 AbstractQueuedSynchronizer 源码解析(上)
## 引导语
AbstractQueuedSynchronizer 中文翻译叫做同步器,简称 AQS,是各种各样锁的基础,比如说 ReentrantLock、CountDownLatch 等等,这些我们经常用的锁底层实现都是 AQS,所以学好 AQS 对于后面理解锁的实现是非常重要的。
锁章节的内容是这么安排的:
1:AQS 源码非常多,我们会分成两个小节来说,先把底层原理弄清楚;
2:我们平时用不到 AQS,只会接触到 ReentrantLock、CountDownLatch 这些锁,我们以两个锁为例子,讲解下源码,因为 AQS 只要弄懂了,所有的锁你只要清楚锁的目的,就能够利用 AQS 去实现它;
3:总结一下锁的面试题;
4:总结一下锁在工作中有哪些使用场景,举几个实际的例子,看看锁使用时,有哪些注意事项;
5:最后我们自己来实现一个锁,看看如果我们自己来实现锁,有哪些步骤,需要注意哪些事项。
ps:本章内容需要大量队列基础知识,没有看过第四章节队列的同学,建议先阅读下队列章节。
### 1 整体架构
首先我们来看一下 AQS 的整体架构图,如下:
![](https://img.kancloud.cn/9d/a9/9da9a1a2248c49493b23683881147de0_2112x846.jpg)
这个图总结了 AQS 整体架构的组成,和部分场景的动态流向,图中两个点说明一下,方便大家观看。
1. AQS 中队列只有两个:同步队列 + 条件队列,底层数据结构两者都是链表;
2. 图中有四种颜色的线代表四种不同的场景,1、2、3 序号代表看的顺序。
AQS 本身就是一套锁的框架,它定义了获得锁和释放锁的代码结构,所以如果要新建锁,只要继承 AQS,并实现相应方法即可。
接下来我们一起来看下这个图中各个细节点。
#### 1.1 类注释
首先我们来看一下,从 AQS 类注释上,我们可以得到哪些信息:
1. 提供了一种框架,自定义了先进先出的同步队列,让获取不到锁的线程能进入同步队列中排队;
2. 同步器有个状态字段,我们可以通过状态字段来判断能否得到锁,此时设计的关键在于依赖安全的 atomic value 来表示状态(虽然注释是这个意思,但实际上是通过把状态声明为 volatile,在锁里面修改状态值来保证线程安全的);
3. 子类可以通过给状态 CAS 赋值来决定能否拿到锁,可以定义那些状态可以获得锁,哪些状态表示获取不到锁(比如定义状态值是 0 可以获得锁,状态值是 1 就获取不到锁);
4. 子类可以新建非 public 的内部类,用内部类来继承 AQS,从而实现锁的功能;
5. AQS 提供了排它模式和共享模式两种锁模式。排它模式下:只有一个线程可以获得锁,共享模式可以让多个线程获得锁,子类 ReadWriteLock 实现了两种模式;
6. 内部类 ConditionObject 可以被用作 Condition,我们通过 new ConditionObject () 即可得到条件队列;
7. AQS 实现了锁、排队、锁队列等框架,至于如何获得锁、释放锁的代码并没有实现,比如 tryAcquire、tryRelease、tryAcquireShared、tryReleaseShared、isHeldExclusively 这些方法,AQS 中默认抛 UnsupportedOperationException 异常,都是需要子类去实现的;
8. AQS 继承 AbstractOwnableSynchronizer 是为了方便跟踪获得锁的线程,可以帮助监控和诊断工具识别是哪些线程持有了锁;
9. AQS 同步队列和条件队列,获取不到锁的节点在入队时是先进先出,但被唤醒时,可能并不会按照先进先出的顺序执行。
AQS 的注释还有很多很多,以上 9 点是挑选出来稍微比较重要的注释总结。
#### 1.2 类定义
AQS 类定义代码如下:
```
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable {
```
可以看出两点:
1. AQS 是个抽象类,就是给各种锁子类继承用的,AQS 定义了很多如何获得锁,如何释放锁的抽象方法,目的就是为了让子类去实现;
2. 继承了 AbstractOwnableSynchronizer,AbstractOwnableSynchronizer 的作用就是为了知道当前是那个线程获得了锁,方便监控用的,代码如下:
![](https://img.kancloud.cn/bd/e5/bde54f3a08c025d093f15bc7063c6917_2100x1410.jpg)
#### 1.3 基本属性
AQS 的属性可简单分为四类:同步器简单属性、同步队列属性、条件队列属性、公用 Node。
#### 1.3.1 简单属性
首先我们来看一下简单属性有哪些:
```
// 同步器的状态,子类会根据状态字段进行判断是否可以获得锁 // 比如 CAS 成功给 state 赋值 1 算得到锁,赋值失败为得不到锁, CAS 成功给 state 赋值 0 算释放锁,赋值失败为释放失败 // 可重入锁,每次获得锁 +1,每次释放锁 -1 private volatile int state; // 自旋超时阀值,单位纳秒 // 当设置等待时间时才会用到这个属性 static final long spinForTimeoutThreshold = 1000L;
```
最重要的就是 state 属性,是 int 属性的,所有继承 AQS 的锁都是通过这个字段来判断能不能获得锁,能不能释放锁。
#### 1.3.2 同步队列属性
首先我们介绍以下同步队列:当多个线程都来请求锁时,某一时刻有且只有一个线程能够获得锁(排它锁),那么剩余获取不到锁的线程,都会到同步队列中去排队并阻塞自己,当有线程主动释放锁时,就会从同步队列头开始释放一个排队的线程,让线程重新去竞争锁。
所以同步队列的主要作用阻塞获取不到锁的线程,并在适当时机释放这些线程。
同步队列底层数据结构是个双向链表,我们从源码中可以看到链表的头尾,如下:
```
// 同步队列的头。 private transient volatile Node head; // 同步队列的尾 private transient volatile Node tail;
```
源码中的 Node 是同步队列中的元素,但 Node 被同步队列和条件队列公用,所以我们在说完条件队列之后再说 Node。
#### 1.3.3 条件队列的属性
首先我们介绍下条件队列:条件队列和同步队列的功能一样,管理获取不到锁的线程,底层数据结构也是链表队列,但条件队列不直接和锁打交道,但常常和锁配合使用,是一定的场景下,对锁功能的一种补充。
条件队列的属性如下:
```
// 条件队列,从属性上可以看出是链表结构 public class ConditionObject implements Condition, java.io.Serializable { private static final long serialVersionUID = 1173984872572414699L; // 条件队列中第一个 node private transient Node firstWaiter; // 条件队列中最后一个 node private transient Node lastWaiter; }
```
ConditionObject 我们就称为条件队列,我们需要使用时,直接 new ConditionObject () 即可。
ConditionObject 是实现 Condition 接口的,Condition 接口相当于 Object 的各种监控方法,比如 Object#wait ()、Object#notify、Object#notifyAll 这些方法,我们可以先这么理解,后面会细说。
#### 1.3.4 Node
Node 非常重要,即是同步队列的节点,又是条件队列的节点,在入队的时候,我们用 Node 把线程包装一下,然后把 Node 放入两个队列中,我们看下 Node 的数据结构,如下:
```
static final class Node { /** * 同步队列单独的属性 */ //node 是共享模式 static final Node SHARED = new Node(); //node 是排它模式 static final Node EXCLUSIVE = null; // 当前节点的前节点 // 节点 acquire 成功后就会变成head // head 节点不能被 cancelled volatile Node prev; // 当前节点的下一个节点 volatile Node next; /** * 两个队列共享的属性 */ // 表示当前节点的状态,通过节点的状态来控制节点的行为 // 普通同步节点,就是 0 ,条件节点是 CONDITION -2 volatile int waitStatus; // waitStatus 的状态有以下几种 // 被取消
static final int CANCELLED = 1; // SIGNAL 状态的意义:同步队列中的节点在自旋获取锁的时候,如果前一个节点的状态是 SIGNAL,那么自己就可以阻塞休息了,否则自己一直自旋尝试获得锁 static final int SIGNAL = -1; // 表示当前 node 正在条件队列中,当有节点从同步队列转移到条件队列时,状态就会被更改成 CONDITION static final int CONDITION = -2; // 无条件传播,共享模式下,该状态的进程处于可运行状态 static final int PROPAGATE = -3; // 当前节点的线程 volatile Thread thread; // 在同步队列中,nextWaiter 并不真的是指向其下一个节点,我们用 next 表示同步队列的下一个节点,nextWaiter 只是表示当前 Node 是排它模式还是共享模式 // 但在条件队列中,nextWaiter 就是表示下一个节点元素 Node nextWaiter; }
```
从 Node 的结构中,我们需要重点关注 waitStatus 字段,Node 的很多操作都是围绕着 waitStatus 字段进行的。
Node 的 pre、next 属性是同步队列中的链表前后指向字段,nextWaiter 是条件队列中下一个节点的指向字段,但在同步队列中,nextWaiter 只是一个标识符,表示当前节点是共享还是排它模式。
#### 1.3.5 共享锁和排它锁的区别
排它锁的意思是同一时刻,只能有一个线程可以获得锁,也只能有一个线程可以释放锁。
共享锁可以允许多个线程获得同一个锁,并且可以设置获取锁的线程数量。
### 1.4 Condition
刚才我们看条件队列 ConditionObject 时,发现其是实现 Condition 接口的,现在我们一起来看下 Condition 接口,其类注释上是这么写的:
1. 当 lock 代替 synchronized 来加锁时,Condition 就可以用来代替 Object 中相应的监控方法了,比如 Object#wait ()、Object#notify、Object#notifyAll 这些方法;
2. 提供了一种线程协作方式:一个线程被暂停执行,直到被其它线程唤醒;
3. Condition 实例是绑定在锁上的,通过 Lock#newCondition 方法可以产生该实例;
4. 除了特殊说明外,任意空值作为方法的入参,都会抛出空指针;
5. Condition 提供了明确的语义和行为,这点和 Object 监控方法不同。
类注释上甚至还给我们举了一个例子:
假设我们有一个有界边界的队列,支持 put 和 take 方法,需要满足: 1:如果试图往空队列上执行 take,线程将会阻塞,直到队列中有可用的元素为止; 2:如果试图往满的队列上执行 put,线程将会阻塞,直到队列中有空闲的位置为止。
1、2 中线程阻塞都会到条件队列中去阻塞。
take 和 put 两种操作如果依靠一个条件队列,那么每次只能执行一种操作,所以我们可以新建两个条件队列,这样就可以分别执行操作了,看了这个需求,是不是觉得很像我们第三章学习的队列?实际上注释上给的 demo 就是我们学习过的队列,篇幅有限,感兴趣的可以看看 ConditionDemo 这个测试类。
除了类注释,Condition 还定义出一些方法,这些方法奠定了条件队列的基础,方法主要有:
void await() throws InterruptedException;
这个方法的主要作用是:使当前线程一直等待,直到被 signalled 或被打断。
当以下四种情况发生时,条件队列中的线程将被唤醒
1. 有线程使用了 signal 方法,正好唤醒了条件队列中的当前线程;
2. 有线程使用了 signalAll 方法;
3. 其它线程打断了当前线程,并且当前线程支持被打断;
4. 被虚假唤醒 (即使没有满足以上 3 个条件,wait 也是可能被偶尔唤醒,虚假唤醒定义可以参考: https://en.wikipedia.org/wiki/Spurious_wakeup)。
被唤醒时,有一点需要注意的是:线程从条件队列中苏醒时,必须重新获得锁,才能真正被唤醒,这个我们在说源码的时候,也会强调这个。
await 方法还有带等待超时时间的,如下:
```
// 返回的 long 值表示剩余的给定等待时间,如果返回的时间小于等于 0 ,说明等待时间过了 // 选择纳秒是为了避免计算剩余等待时间时的截断误差 long awaitNanos(long nanosTimeout) throws InterruptedException; // 虽然入参可以是任意单位的时间,但底层仍然转化成纳秒 boolean await(long time, TimeUnit unit) throws InterruptedException;
除了等待方法,还是唤醒线程的两个方法,如下:
// 唤醒条件队列中的一个线程,在被唤醒前必须先获得锁 void signal(); // 唤醒条件队列中的所有线程 void signalAll();
```
至此,AQS 基本的属性就已经介绍完了,接着让我们来看一看 AQS 的重要方法。
### 2 同步器的状态
在同步器中,我们有两个状态,一个叫做 state,一个叫做 waitStatus,两者是完全不同的概念:
1. state 是锁的状态,是 int 类型,子类继承 AQS 时,都是要根据 state 字段来判断有无得到锁,比如当前同步器状态是 0,表示可以获得锁,当前同步器状态是 1,表示锁已经被其他线程持有,当前线程无法获得锁;
2. waitStatus 是节点(Node)的状态,种类很多,一共有初始化 (0)、CANCELLED (1)、SIGNAL (-1)、CONDITION (-2)、PROPAGATE (-3),各个状态的含义可以见上文。
这两个状态我们需要牢记,不要混淆了。
### 3 获取锁
获取锁最直观的感受就是使用 Lock.lock () 方法来获得锁,最终目的是想让线程获得对资源的访问权。
Lock 一般是 AQS 的子类,lock 方法根据情况一般会选择调用 AQS 的 acquire 或 tryAcquire 方法。
acquire 方法 AQS 已经实现了,tryAcquire 方法是等待子类去实现,acquire 方法制定了获取锁的框架,先尝试使用 tryAcquire 方法获取锁,获取不到时,再入同步队列中等待锁。tryAcquire 方法 AQS 中直接抛出一个异常,表明需要子类去实现,子类可以根据同步器的 state 状态来决定是否能够获得锁,接下来我们详细看下 acquire 的源码解析。
acquire 也分两种,一种是排它锁,一种是共享锁,我们一一来看下:
#### 3.1 acquire 排它锁
```
// 排它模式下,尝试获得锁 public final void acquire(int arg) { // tryAcquire 方法是需要实现类去实现的,实现思路一般都是 cas 给 state 赋值来决定是否能获得锁 if (!tryAcquire(arg) && // addWaiter 入参代表是排他模式 acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }
```
以上代码的主要步骤是(流程见整体架构图中红色场景):
1. 尝试执行一次 tryAcquire,如果成功直接返回,失败走 2;
2. 线程尝试进入同步队列,首先调用 addWaiter 方法,把当前线程放到同步队列的队尾;
3. 接着调用 acquireQueued 方法,两个作用,1:阻塞当前节点,2:节点被唤醒时,使其能够获得锁;
4. 如果 2、3 失败了,打断线程。
#### 3.1.1 addWaiter
代码很少,每个方法都是关键,接下来我们先来看下 addWaiter 的源码实现:
```
// 方法主要目的:node 追加到同步队列的队尾 // 入参 mode 表示 Node 的模式(排它模式还是共享模式) // 出参是新增的 node // 主要思路: // 新 node.pre = 队尾 // 队尾.next = 新 node private Node addWaiter(Node mode) {
// 初始化 Node Node node = new Node(Thread.currentThread(), mode); // 这里的逻辑和 enq 一致,enq 的逻辑仅仅多了队尾是空,初始化的逻辑 // 这个思路在 java 源码中很常见,先简单的尝试放一下,成功立马返回,如果不行,再 while 循环 // 很多时候,这种算法可以帮忙解决大部分的问题,大部分的入队可能一次都能成功,无需自旋 Node pred = tail; if (pred != null) { node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } //自旋保证node加入到队尾 enq(node); return node; } // 线程加入同步队列中方法,追加到队尾 // 这里需要重点注意的是,返回值是添加 node 的前一个节点 private Node enq(final Node node) { for (;;) { // 得到队尾节点 Node t = tail; // 如果队尾为空,说明当前同步队列都没有初始化,进行初始化 // tail = head = new Node(); if (t == null) { if (compareAndSetHead(new Node())) tail = head; // 队尾不为空,将当前节点追加到队尾 } else {
node.prev = t; // node 追加到队尾 if (compareAndSetTail(t, node)) { t.next = node; return t; } } } }
```
如果之前学习过队列的同学,对这个方法应该感觉毫不吃力,就是把新的节点追加到同步队列的队尾。
其中有一点值得我们学习的地方,是在 addWaiter 方法中,并没有进入方法后立马就自旋,而是先尝试一次追加到队尾,如果失败才自旋,因为大部分操作可能一次就会成功,这种思路在我们写自旋的时候可以借鉴。
#### 3.1.2 acquireQueued
下一步就是要阻塞当前线程了,是 acquireQueued 方法来实现的,我们来看下源码实现:
```
// 主要做两件事情: // 1:通过不断的自旋尝试使自己前一个节点的状态变成 signal,然后阻塞自己。 // 2:获得锁的线程执行完成之后,释放锁时,会把阻塞的 node 唤醒,node 唤醒之后再次自旋,尝试获得锁 // 返回 false 表示获得锁成功,返回 true 表示失败 final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; // 自旋 for (;;) {
// 选上一个节点 final Node p = node.predecessor(); // 有两种情况会走到 p == head: // 1:node 之前没有获得锁,进入 acquireQueued 方法时,才发现他的前置节点就是头节点,于是尝试获得一次锁; // 2:node 之前一直在阻塞沉睡,然后被唤醒,此时唤醒 node 的节点正是其前一个节点,也能走到 if // 如果自己 tryAcquire 成功,就立马把自己设置成 head,把上一个节点移除 // 如果 tryAcquire 失败,尝试进入同步队列 if (p == head && tryAcquire(arg)) { // 获得锁,设置成 head 节点 setHead(node); //p被回收 p.next = null; // help GC failed = false; return interrupted; } // shouldParkAfterFailedAcquire 把 node 的前一个节点状态置为 SIGNAL // 只要前一个节点状态是 SIGNAL了,那么自己就可以阻塞(park)了 // parkAndCheckInterrupt 阻塞当前线程 if (shouldParkAfterFailedAcquire(p, node) && // 线程是在这个方法里面阻塞的,醒来的时候仍然在无限 for 循环里面,就能再次自旋尝试获得锁 parkAndCheckInterrupt()) interrupted = true; } } finally { // 如果获得node的锁失败,将 node 从队列中移除 if (failed) cancelAcquire(node);
} }
```
此方法的注释还是很清楚的,我们接着看下此方法的核心:shouldParkAfterFailedAcquire,这个方法的主要目的就是把前一个节点的状态置为 SIGNAL,只要前一个节点的状态是 SIGNAL,当前节点就可以阻塞了(parkAndCheckInterrupt 就是使节点阻塞的方法),源码如下:
```
// 当前线程可以安心阻塞的标准,就是前一个节点线程状态是 SIGNAL 了。 // 入参 pred 是前一个节点,node 是当前节点。 // 关键操作: // 1:确认前一个节点是否有效,无效的话,一直往前找到状态不是取消的节点。 // 2: 把前一个节点状态置为 SIGNAL。 // 1、2 两步操作,有可能一次就成功,有可能需要外部循环多次才能成功(外面是个无限的 for 循环),但最后一定是可以成功的 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { int ws = pred.waitStatus; // 如果前一个节点 waitStatus 状态已经是 SIGNAL 了,直接返回,不需要在自旋了 if (ws == Node.SIGNAL) /* * This node has already set status asking a release * to signal it, so it can safely park. */ return true; // 如果当前节点状态已经被取消了。 if (ws > 0) { /* * Predecessor was cancelled. Skip over predecessors and * indicate retry. */ // 找到前一个状态不是取消的节点,因为把当前 node 挂在有效节点身上 // 因为节点状态是取消的话,是无效的,是不能作为 node 的前置节点的,所以必须找到
node 的有效节点才行 do { node.prev = pred = pred.prev; } while (pred.waitStatus > 0); pred.next = node; // 否则直接把节点状态置 为SIGNAL } else { /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don't park yet. Caller will need to * retry to make sure it cannot acquire before parking. */ compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } return false; }
```
acquire 整个过程非常长,代码也非常多,但注释很清楚,可以一行一行仔细看看代码。
总结一下,acquire 方法大致分为三步:
1. 使用 tryAcquire 方法尝试获得锁,获得锁直接返回,获取不到锁的走 2;
2. 把当前线程组装成节点(Node),追加到同步队列的尾部(addWaiter);
3. 自旋,使同步队列中当前节点的前置节点状态为 signal 后,然后阻塞自己。
整体的代码结构比较清晰,一些需要注意的点,都用注释表明了,强烈建议阅读下源码。
#### 3.2 acquireShared 获取共享锁
acquireShared 整体流程和 acquire 相同,代码也很相似,重复的源码就不贴了,我们就贴出来不一样的代码来,也方便大家进行比较:
1. 第一步尝试获得锁的地方,有所不同,排它锁使用的是 tryAcquire 方法,共享锁使用的是 tryAcquireShared 方法,如下图:
![](https://img.kancloud.cn/a6/28/a628319e558299e84811255e652a794a_1837x445.jpg)
2. 第二步不同,在于节点获得排它锁时,仅仅把自己设置为同步队列的头节点即可(setHead 方法),但如果是共享锁的话,还会去唤醒自己的后续节点,一起来获得该锁(setHeadAndPropagate 方法),不同之处如下(左边排它锁,右边共享锁):
![](https://img.kancloud.cn/88/5e/885eceb514d240d81e97ec398a70cb34_1861x913.jpg)
接下来我们一起来看下 setHeadAndPropagate 方法的源码:
```
// 主要做两件事情 // 1:把当前节点设置成头节点 // 2:看看后续节点有无正在等待,并且也是共享模式的,有的话唤醒这些节点 private void setHeadAndPropagate(Node node, int propagate) { Node h = head; // Record old head for check below // 当前节点设置成头节点 setHead(node); /*
* Try to signal next queued node if: * Propagation was indicated(表示指示) by caller, * or was recorded (as h.waitStatus either before * or after setHead) by a previous operation * (note: this uses sign-check of waitStatus because * PROPAGATE status may transition to SIGNAL.) * and * The next node is waiting in shared mode, * or we don't know, because it appears null * * The conservatism(保守) in both of these checks may cause * unnecessary wake-ups, but only when there are multiple * racing acquires/releases, so most need signals now or soon * anyway. */ // propagate > 0 表示已经有节点获得共享锁了 if (propagate > 0 || h == null || h.waitStatus < 0 || (h = head) == null || h.waitStatus < 0) { Node s = node.next; //共享模式,还唤醒头节点的后置节点 if (s == null || s.isShared()) doReleaseShared(); } } // 释放后置共享节点 private void doReleaseShared() { /* * Ensure that a release propagates, even if there are other * in-progress acquires/releases. This proceeds in the usual * way of trying to unparkSuccessor of head if it needs * signal. But if it does not, status is set to PROPAGATE to * ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added * while we are doing this. Also, unlike other uses of * unparkSuccessor, we need to know if CAS to reset status * fails, if so rechecking. */ for (;;) { Node h = head; // 还没有到队尾,此时队列中至少有两个节点 if (h != null && h != tail) { int ws = h.waitStatus; // 如果队列状态是 SIGNAL ,说明后续节点都需要唤醒 if (ws == Node.SIGNAL) { // CAS 保证只有一个节点可以运行唤醒的操作 if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) continue; // loop to recheck cases // 进行唤醒操作 unparkSuccessor(h); } else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) continue; // loop on failed CAS } // 第一种情况,头节点没有发生移动,结束。 //
第二种情况,因为此方法可以被两处调用,一次是获得锁的地方,一处是释放锁的地方, // 加上共享锁的特性就是可以多个线程获得锁,也可以释放锁,这就导致头节点可能会发生变化, // 如果头节点发生了变化,就继续循环,一直循环到头节点不变化时,结束循环。 if (h == head) // loop if head changed break; } }
```
这个就是共享锁独特的地方,当一个线程获得锁后,它就会去唤醒排在它后面的其它节点,让其它节点也能够获得锁。
### 4 总结
AQS 的内容实在太多了,这只是 AQS 的上篇,但内容长度已经超过了我们平时章节的三倍了,所以不得不分节,下一章仍然是 AQS,主要讲解锁的释放和条件队列两大部分。
- 前言
- 第1章 基础
- 01 开篇词:为什么学习本专栏
- 02 String、Long 源码解析和面试题
- 03 Java 常用关键字理解
- 04 Arrays、Collections、Objects 常用方法源码解析
- 第2章 集合
- 05 ArrayList 源码解析和设计思路
- 06 LinkedList 源码解析
- 07 List 源码会问哪些面试题
- 08 HashMap 源码解析
- 09 TreeMap 和 LinkedHashMap 核心源码解析
- 10 Map源码会问哪些面试题
- 11 HashSet、TreeSet 源码解析
- 12 彰显细节:看集合源码对我们实际工作的帮助和应用
- 13 差异对比:集合在 Java 7 和 8 有何不同和改进
- 14 简化工作:Guava Lists Maps 实际工作运用和源码
- 第3章 并发集合类
- 15 CopyOnWriteArrayList 源码解析和设计思路
- 16 ConcurrentHashMap 源码解析和设计思路
- 17 并发 List、Map源码面试题
- 18 场景集合:并发 List、Map的应用场景
- 第4章 队列
- 19 LinkedBlockingQueue 源码解析
- 20 SynchronousQueue 源码解析
- 21 DelayQueue 源码解析
- 22 ArrayBlockingQueue 源码解析
- 23 队列在源码方面的面试题
- 24 举一反三:队列在 Java 其它源码中的应用
- 25 整体设计:队列设计思想、工作中使用场景
- 26 惊叹面试官:由浅入深手写队列
- 第5章 线程
- 27 Thread 源码解析
- 28 Future、ExecutorService 源码解析
- 29 押宝线程源码面试题
- 第6章 锁
- 30 AbstractQueuedSynchronizer 源码解析(上)
- 31 AbstractQueuedSynchronizer 源码解析(下)
- 32 ReentrantLock 源码解析
- 33 CountDownLatch、Atomic 等其它源码解析
- 34 只求问倒:连环相扣系列锁面试题
- 35 经验总结:各种锁在工作中使用场景和细节
- 36 从容不迫:重写锁的设计结构和细节
- 第7章 线程池
- 37 ThreadPoolExecutor 源码解析
- 38 线程池源码面试题
- 39 经验总结:不同场景,如何使用线程池
- 40 打动面试官:线程池流程编排中的运用实战
- 第8章 Lambda 流
- 41 突破难点:如何看 Lambda 源码
- 42 常用的 Lambda 表达式使用场景解析和应用
- 第9章 其他
- 43 ThreadLocal 源码解析
- 44 场景实战:ThreadLocal 在上下文传值场景下的实践
- 45 Socket 源码及面试题
- 46 ServerSocket 源码及面试题
- 47 工作实战:Socket 结合线程池的使用
- 第10章 专栏总结
- 48 一起看过的 Java 源码和面试真题