**生成式对抗网络**(GAN,generative adversarial network)
* 可以替代 VAE 来学习图像的潜在空间。
* 能够迫使生成图像与真实图像在统计上几乎无法区分,从而生成相当逼真的合成图像。
* 一个伪造者网络和一个专家网络,二者训练的目的都是为了打败彼此
**组成:**
* **生成器网络**(generator network):它以一个随机向量(潜在空间中的一个随机点)作为输入,并将其解码为一张合成图像。
* **判别器网络**(discriminator network)或**对手**(adversary):以一张图像(真实的或合成的均可)作为输入,并预测该图像是来自训练集还是由生成器网络创建。
**优化最小值:**
* 对于 GAN 而言,每下山一步,都会对整个地形造成一点改变。它是一个动态的系统,其最优化过程寻找的不是一个最小值,而是两股力量之间的平衡。
- 基础
- 张量tensor
- 整数序列(列表)=>张量
- 张量运算
- 张量运算的几何解释
- 层:深度学习的基础组件
- 模型:层构成的网络
- 训练循环 (training loop)
- 数据类型与层类型、keras
- Keras
- Keras 开发
- Keras使用本地数据
- fit、predict、evaluate
- K 折 交叉验证
- 二分类问题-基于梯度的优化-训练
- relu运算
- Dens
- 损失函数与优化器:配置学习过程的关键
- 损失-二分类问题
- 优化器
- 过拟合 (overfit)
- 改进
- 小结
- 多分类问题
- 回归问题
- 章节小结
- 机械学习
- 训练集、验证集和测试集
- 三种经典的评估方法
- 模型评估
- 如何准备输入数据和目标?
- 过拟合与欠拟合
- 减小网络大小
- 添加权重正则化
- 添加 dropout 正则化
- 通用工作流程
- 计算机视觉
- 卷积神经网络
- 卷积运算
- 卷积的工作原理
- 训练一个卷积神经网络
- 使用预训练的卷积神经网络
- VGG16
- VGG16详细结构
- 为什么不微调整个卷积基?
- 卷积神经网络的可视化
- 中间输出(中间激活)
- 过滤器
- 热力图
- 文本和序列
- 处理文本数据
- n-gram
- one-hot 编码 (one-hot encoding)
- 标记嵌入 (token embedding)
- 利用 Embedding 层学习词嵌入
- 使用预训练的词嵌入
- 循环神经网络
- 循环神经网络的高级用法
- 温度预测问题
- code
- 用卷积神经网络处理序列
- GRU 层
- LSTM层
- 多输入模型
- 回调函数
- ModelCheckpoint 与 EarlyStopping
- ReduceLROnPlateau
- 自定义回调函数
- TensorBoard_TensorFlow 的可视化框架
- 高级架构模式
- 残差连接
- 批标准化
- 批再标准化
- 深度可分离卷积
- 超参数优化
- 模型集成
- LSTM
- DeepDream
- 神经风格迁移
- 变分自编码器
- 生成式对抗网络
- 术语表