# Web 技术
> 原文:[Web Technologies](https://www.textbook.ds100.org/ch/07/web_intro.html)
>
> 校验:[Kitty Du](https://github.com/miaoxiaozui2017)
>
> 自豪地采用[谷歌翻译](https://translate.google.cn/)
```python
# HIDDEN
# Clear previously defined variables
%reset -f
# Set directory for data loading to work properly
import os
os.chdir(os.path.expanduser('~/notebooks/07'))
```
在互联网出现之前,数据科学家必须通过物理方式移动硬盘驱动器与其他人共享数据。现在,我们可以自由地从世界各地的计算机中检索数据集。
虽然我们使用互联网下载和共享数据文件,但互联网上的网页本身包含大量的信息,如文本、图像和视频。通过学习Web技术,我们可以使用Web作为数据源。在本章中,我们将介绍 Web 的主要通信协议 HTTP,以及 Web 页面的主要文档格式 XML/HTML。
- 一、数据科学的生命周期
- 二、数据生成
- 三、处理表格数据
- 四、数据清理
- 五、探索性数据分析
- 六、数据可视化
- Web 技术
- 超文本传输协议
- 处理文本
- python 字符串方法
- 正则表达式
- regex 和 python
- 关系数据库和 SQL
- 关系模型
- SQL
- SQL 连接
- 建模与估计
- 模型
- 损失函数
- 绝对损失和 Huber 损失
- 梯度下降与数值优化
- 使用程序最小化损失
- 梯度下降
- 凸性
- 随机梯度下降法
- 概率与泛化
- 随机变量
- 期望和方差
- 风险
- 线性模型
- 预测小费金额
- 用梯度下降拟合线性模型
- 多元线性回归
- 最小二乘-几何透视
- 线性回归案例研究
- 特征工程
- 沃尔玛数据集
- 预测冰淇淋评级
- 偏方差权衡
- 风险和损失最小化
- 模型偏差和方差
- 交叉验证
- 正规化
- 正则化直觉
- L2 正则化:岭回归
- L1 正则化:LASSO 回归
- 分类
- 概率回归
- Logistic 模型
- Logistic 模型的损失函数
- 使用逻辑回归
- 经验概率分布的近似
- 拟合 Logistic 模型
- 评估 Logistic 模型
- 多类分类
- 统计推断
- 假设检验和置信区间
- 置换检验
- 线性回归的自举(真系数的推断)
- 学生化自举
- P-HACKING
- 向量空间回顾
- 参考表
- Pandas
- Seaborn
- Matplotlib
- Scikit Learn