多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
# 线性模型 > 原文:[https://www.bookbookmark.ds100.org/ch/13/linear_models.html](https://www.bookbookmark.ds100.org/ch/13/linear_models.html) ``` # HIDDEN # Clear previously defined variables %reset -f # Set directory for data loading to work properly import os os.chdir(os.path.expanduser('~/notebooks/13')) ``` 既然我们有了将模型拟合到成本函数的一般方法,那么我们就将注意力转向模型的改进。为了简单起见,我们以前把自己局限于一个常量模型:我们的模型只预测一个数字。 然而,给我们的服务生这样一个模特,他很难满足。他可能会指出,他收集了更多关于他的桌子的信息,而不仅仅是小费百分比。为什么我们不使用他的其他数据,例如表的大小或总帐单,以使我们的模型更有用? 在本章中,我们将介绍线性模型,它将允许我们利用整个数据集进行预测。线性模型不仅在实践中得到广泛应用,而且具有丰富的理论基础,使我们能够理解未来的建模工具。我们引入了一个简单的线性回归模型,它使用一个解释变量,解释了如何使用梯度下降来拟合模型,最后将模型扩展为包含多个解释变量。