# 3.5 检测OpenMP的并行环境
**NOTE**:*此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-03/recipe-05 中找到,有一个C++和一个Fortran示例。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-03/recipe-05 中也有一个适用于CMake 3.5的示例。*
目前,市面上的计算机几乎都是多核机器,对于性能敏感的程序,我们必须关注这些多核处理器,并在编程模型中使用并发。OpenMP是多核处理器上并行性的标准之一。为了从OpenMP并行化中获得性能收益,通常不需要修改或重写现有程序。一旦确定了代码中的性能关键部分,例如:使用分析工具,程序员就可以通过预处理器指令,指示编译器为这些区域生成可并行的代码。
本示例中,我们将展示如何编译一个包含OpenMP指令的程序(前提是使用一个支持OpenMP的编译器)。有许多支持OpenMP的Fortran、C和C++编译器。对于相对较新的CMake版本,为OpenMP提供了非常好的支持。本示例将展示如何在使用CMake 3.9或更高版本时,使用简单C++和Fortran程序来链接到OpenMP。
**NOTE**:*根据Linux发行版的不同,Clang编译器的默认版本可能不支持OpenMP。使用或非苹果版本的Clang(例如,Conda提供的)或GNU编译器,除非单独安装libomp库(https://iscinumpy.gitlab.io/post/omp-on-high-sierra/ ),否则本节示例将无法在macOS上工作。*
## 准备工作
C和C++程序可以通过包含`omp.h`头文件和链接到正确的库,来使用OpenMP功能。编译器将在性能关键部分之前添加预处理指令,并生成并行代码。在本示例中,我们将构建以下示例源代码(`example.cpp`)。这段代码从1到N求和,其中N作为命令行参数:
```c++
#include <iostream>
#include <omp.h>
#include <string>
int main(int argc, char *argv[])
{
std::cout << "number of available processors: " << omp_get_num_procs()
<< std::endl;
std::cout << "number of threads: " << omp_get_max_threads() << std::endl;
auto n = std::stol(argv[1]);
std::cout << "we will form sum of numbers from 1 to " << n << std::endl;
// start timer
auto t0 = omp_get_wtime();
auto s = 0LL;
#pragma omp parallel for reduction(+ : s)
for (auto i = 1; i <= n; i++)
{
s += i;
}
// stop timer
auto t1 = omp_get_wtime();
std::cout << "sum: " << s << std::endl;
std::cout << "elapsed wall clock time: " << t1 - t0 << " seconds" << std::endl;
return 0;
}
```
在Fortran语言中,需要使用`omp_lib`模块并链接到库。在性能关键部分之前的代码注释中,可以再次使用并行指令。例如:`F90`需要包含以下内容:
```fortran
program example
use omp_lib
implicit none
integer(8) :: i, n, s
character(len=32) :: arg
real(8) :: t0, t1
print *, "number of available processors:", omp_get_num_procs()
print *, "number of threads:", omp_get_max_threads()
call get_command_argument(1, arg)
read(arg , *) n
print *, "we will form sum of numbers from 1 to", n
! start timer
t0 = omp_get_wtime()
s = 0
!$omp parallel do reduction(+:s)
do i = 1, n
s = s + i
end do
! stop timer
t1 = omp_get_wtime()
print *, "sum:", s
print *, "elapsed wall clock time (seconds):", t1 - t0
end program
```
## 具体实施
对于C++和Fortran的例子,`CMakeLists.txt`将遵循一个模板,该模板在这两种语言上很相似:
1. 两者都定义了CMake最低版本、项目名称和语言(CXX或Fortran;我们将展示C++版本):
```cmake
cmake_minimum_required(VERSION 3.9 FATAL_ERROR)
project(recipe-05 LANGUAGES CXX)
```
2. 使用C++11标准:
```cmake
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
```
3. 调用find_package来搜索OpenMP:
```cmake
find_package(OpenMP REQUIRED)
```
4. 最后,我们定义可执行目标,并链接到FindOpenMP模块提供的导入目标(在Fortran的情况下,我们链接到`OpenMP::OpenMP_Fortran`):
```cmake
add_executable(example example.cpp)
target_link_libraries(example
PUBLIC
OpenMP::OpenMP_CXX
)
```
5. 现在,可以配置和构建代码了:
```shell
$ mkdir -p build
$ cd build
$ cmake ..
$ cmake --build .
```
6. 并行测试(在本例中使用了4个内核):
```shell
$ ./example 1000000000
number of available processors: 4
number of threads: 4
we will form sum of numbers from 1 to 1000000000
sum: 500000000500000000
elapsed wall clock time: 1.08343 seconds
```
7. 为了比较,我们可以重新运行这个例子,并将OpenMP线程的数量设置为1:
```shell
$ env OMP_NUM_THREADS=1 ./example 1000000000
number of available processors: 4
number of threads: 1
we will form sum of numbers from 1 to 1000000000
sum: 500000000500000000
elapsed wall clock time: 2.96427 seconds
```
## 工作原理
我们的示例很简单:编译代码,并运行在多个内核上时,我们会看到加速效果。加速效果并不是`OMP_NUM_THREADS`的倍数,不过本示例中并不关心,因为我们更关注的是如何使用CMake配置需要使用OpenMP的项目。我们发现链接到OpenMP非常简单,这要感谢`FindOpenMP`模块:
```cmake
target_link_libraries(example
PUBLIC
OpenMP::OpenMP_CXX
)
```
我们不关心编译标志或包含目录——这些设置和依赖项是在`OpenMP::OpenMP_CXX`中定义的(`IMPORTED`类型)。如第1章第3节中提到的,`IMPORTED`库是伪目标,它完全是我们自己项目的外部依赖项。要使用OpenMP,需要设置一些编译器标志,包括目录和链接库。所有这些都包含在`OpenMP::OpenMP_CXX`的属性上,并通过使用`target_link_libraries`命令传递给`example`。这使得在CMake中,使用库变得非常容易。我们可以使用`cmake_print_properties`命令打印接口的属性,该命令由`CMakePrintHelpers.CMake`模块提供:
```cmake
include(CMakePrintHelpers)
cmake_print_properties(
TARGETS
OpenMP::OpenMP_CXX
PROPERTIES
INTERFACE_COMPILE_OPTIONS
INTERFACE_INCLUDE_DIRECTORIES
INTERFACE_LINK_LIBRARIES
)
```
所有属性都有`INTERFACE_`前缀,因为这些属性对所需目标,需要以接口形式提供,并且目标以接口的方式使用OpenMP。
对于低于3.9的CMake版本:
```cmake
add_executable(example example.cpp)
target_compile_options(example
PUBLIC
${OpenMP_CXX_FLAGS}
)
set_target_properties(example
PROPERTIES
LINK_FLAGS ${OpenMP_CXX_FLAGS}
)
```
对于低于3.5的CMake版本,我们需要为Fortran项目显式定义编译标志。
在这个示例中,我们讨论了C++和Fortran。相同的参数和方法对于C项目也有效。
- Introduction
- 前言
- 第0章 配置环境
- 0.1 获取代码
- 0.2 Docker镜像
- 0.3 安装必要的软件
- 0.4 测试环境
- 0.5 上报问题并提出改进建议
- 第1章 从可执行文件到库
- 1.1 将单个源文件编译为可执行文件
- 1.2 切换生成器
- 1.3 构建和链接静态库和动态库
- 1.4 用条件句控制编译
- 1.5 向用户显示选项
- 1.6 指定编译器
- 1.7 切换构建类型
- 1.8 设置编译器选项
- 1.9 为语言设定标准
- 1.10 使用控制流
- 第2章 检测环境
- 2.1 检测操作系统
- 2.2 处理与平台相关的源代码
- 2.3 处理与编译器相关的源代码
- 2.4 检测处理器体系结构
- 2.5 检测处理器指令集
- 2.6 为Eigen库使能向量化
- 第3章 检测外部库和程序
- 3.1 检测Python解释器
- 3.2 检测Python库
- 3.3 检测Python模块和包
- 3.4 检测BLAS和LAPACK数学库
- 3.5 检测OpenMP的并行环境
- 3.6 检测MPI的并行环境
- 3.7 检测Eigen库
- 3.8 检测Boost库
- 3.9 检测外部库:Ⅰ. 使用pkg-config
- 3.10 检测外部库:Ⅱ. 自定义find模块
- 第4章 创建和运行测试
- 4.1 创建一个简单的单元测试
- 4.2 使用Catch2库进行单元测试
- 4.3 使用Google Test库进行单元测试
- 4.4 使用Boost Test进行单元测试
- 4.5 使用动态分析来检测内存缺陷
- 4.6 预期测试失败
- 4.7 使用超时测试运行时间过长的测试
- 4.8 并行测试
- 4.9 运行测试子集
- 4.10 使用测试固件
- 第5章 配置时和构建时的操作
- 5.1 使用平台无关的文件操作
- 5.2 配置时运行自定义命令
- 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
- 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
- 5.5 构建时为特定目标运行自定义命令
- 5.6 探究编译和链接命令
- 5.7 探究编译器标志命令
- 5.8 探究可执行命令
- 5.9 使用生成器表达式微调配置和编译
- 第6章 生成源码
- 6.1 配置时生成源码
- 6.2 使用Python在配置时生成源码
- 6.3 构建时使用Python生成源码
- 6.4 记录项目版本信息以便报告
- 6.5 从文件中记录项目版本
- 6.6 配置时记录Git Hash值
- 6.7 构建时记录Git Hash值
- 第7章 构建项目
- 7.1 使用函数和宏重用代码
- 7.2 将CMake源代码分成模块
- 7.3 编写函数来测试和设置编译器标志
- 7.4 用指定参数定义函数或宏
- 7.5 重新定义函数和宏
- 7.6 使用废弃函数、宏和变量
- 7.7 add_subdirectory的限定范围
- 7.8 使用target_sources避免全局变量
- 7.9 组织Fortran项目
- 第8章 超级构建模式
- 8.1 使用超级构建模式
- 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
- 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
- 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
- 8.5 使用超级构建支持项目
- 第9章 语言混合项目
- 9.1 使用C/C++库构建Fortran项目
- 9.2 使用Fortran库构建C/C++项目
- 9.3 使用Cython构建C++和Python项目
- 9.4 使用Boost.Python构建C++和Python项目
- 9.5 使用pybind11构建C++和Python项目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 编写安装程序
- 10.1 安装项目
- 10.2 生成输出头文件
- 10.3 输出目标
- 10.4 安装超级构建
- 第11章 打包项目
- 11.1 生成源代码和二进制包
- 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
- 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
- 11.4 以Conda包的形式发布一个简单的项目
- 11.5 将Conda包作为依赖项发布给项目
- 第12章 构建文档
- 12.1 使用Doxygen构建文档
- 12.2 使用Sphinx构建文档
- 12.3 结合Doxygen和Sphinx
- 第13章 选择生成器和交叉编译
- 13.1 使用CMake构建Visual Studio 2017项目
- 13.2 交叉编译hello world示例
- 13.3 使用OpenMP并行化交叉编译Windows二进制文件
- 第14章 测试面板
- 14.1 将测试部署到CDash
- 14.2 CDash显示测试覆盖率
- 14.3 使用AddressSanifier向CDash报告内存缺陷
- 14.4 使用ThreadSaniiser向CDash报告数据争用
- 第15章 使用CMake构建已有项目
- 15.1 如何开始迁移项目
- 15.2 生成文件并编写平台检查
- 15.3 检测所需的链接和依赖关系
- 15.4 复制编译标志
- 15.5 移植测试
- 15.6 移植安装目标
- 15.7 进一步迁移的措施
- 15.8 项目转换为CMake的常见问题
- 第16章 可能感兴趣的书
- 16.1 留下评论——让其他读者知道你的想法