# 快速上手
本节课程提供一个使用 Spark 的快速介绍,首先我们使用 Spark 的交互式 shell(用 Python 或 Scala) 介绍它的 API。当演示如何在 Java, Scala 和 Python 写独立的程序时,看[编程指南](https://spark.apache.org/docs/latest/programming-guide.html)里完整的参考。
依照这个指南,首先从 [Spark 网站](https://spark.apache.org/downloads.html)下载一个 Spark 发行包。因为我们不会使用 HDFS,你可以下载任何 Hadoop 版本的包。
* [Spark Shell](using-spark-shell.md)
* [独立应用程序](standalone-applications.md)
* [开始翻滚吧!](where-to-go-from-here.md)
- Introduction
- 快速上手
- Spark Shell
- 独立应用程序
- 开始翻滚吧!
- RDD编程基础
- 基础介绍
- 外部数据集
- RDD 操作
- 转换Transformations
- map与flatMap解析
- 动作Actions
- RDD持久化
- RDD容错机制
- 传递函数到 Spark
- 使用键值对
- RDD依赖关系与DAG
- 共享变量
- Spark Streaming
- 一个快速的例子
- 基本概念
- 关联
- 初始化StreamingContext
- 离散流
- 输入DStreams
- DStream中的转换
- DStream的输出操作
- 缓存或持久化
- Checkpointing
- 部署应用程序
- 监控应用程序
- 性能调优
- 减少批数据的执行时间
- 设置正确的批容量
- 内存调优
- 容错语义
- Spark SQL
- 概述
- SparkSQLvsHiveSQL
- 数据源
- RDDs
- parquet文件
- JSON数据集
- Hive表
- 数据源例子
- join操作
- 聚合操作
- 性能调优
- 其他
- Spark SQL数据类型
- 其它SQL接口
- 编写语言集成(Language-Integrated)的相关查询
- GraphX编程指南
- 开始
- 属性图
- 图操作符
- Pregel API
- 图构造者
- 部署
- 顶点和边RDDs
- 图算法
- 例子
- 更多文档
- 提交应用程序
- 独立运行Spark
- 在yarn上运行Spark
- Spark配置
- RDD 持久化