# 顶点和边RDDs
GraphX暴露保存在图中的顶点和边的RDD。然而,因为GraphX包含的顶点和边拥有优化的数据结构,这些数据结构提供了额外的功能。顶点和边分别返回`VertexRDD`和`EdgeRDD`。这一章
我们将学习它们的一些有用的功能。
## VertexRDDs
`VertexRDD[A]`继承自`RDD[(VertexID, A)]`并且添加了额外的限制,那就是每个`VertexID`只能出现一次。此外,`VertexRDD[A]`代表了一组属性类型为A的顶点。在内部,这通过
保存顶点属性到一个可重复使用的hash-map数据结构来获得。所以,如果两个`VertexRDDs`从相同的基本`VertexRDD`获得(如通过filter或者mapValues),它们能够在固定的时间内连接
而不需要hash评价。为了利用这个索引数据结构,`VertexRDD`暴露了一下附加的功能:
```scala
class VertexRDD[VD] extends RDD[(VertexID, VD)] {
// Filter the vertex set but preserves the internal index
def filter(pred: Tuple2[VertexId, VD] => Boolean): VertexRDD[VD]
// Transform the values without changing the ids (preserves the internal index)
def mapValues[VD2](map: VD => VD2): VertexRDD[VD2]
def mapValues[VD2](map: (VertexId, VD) => VD2): VertexRDD[VD2]
// Remove vertices from this set that appear in the other set
def diff(other: VertexRDD[VD]): VertexRDD[VD]
// Join operators that take advantage of the internal indexing to accelerate joins (substantially)
def leftJoin[VD2, VD3](other: RDD[(VertexId, VD2)])(f: (VertexId, VD, Option[VD2]) => VD3): VertexRDD[VD3]
def innerJoin[U, VD2](other: RDD[(VertexId, U)])(f: (VertexId, VD, U) => VD2): VertexRDD[VD2]
// Use the index on this RDD to accelerate a `reduceByKey` operation on the input RDD.
def aggregateUsingIndex[VD2](other: RDD[(VertexId, VD2)], reduceFunc: (VD2, VD2) => VD2): VertexRDD[VD2]
}
```
举个例子,`filter`操作如何返回一个VertexRDD。过滤器实际使用一个`BitSet`实现,因此它能够重用索引以及保留和其它`VertexRDDs`做连接时速度快的能力。同样的,`mapValues`操作
不允许`map`函数改变`VertexID`,因此可以保证相同的`HashMap`数据结构能够重用。当连接两个从相同的`hashmap`获取的VertexRDDs和使用线性扫描而不是昂贵的点查找实现连接操作时,`leftJoin`
和`innerJoin`都能够使用。
从一个`RDD[(VertexID, A)]`高效地构建一个新的`VertexRDD`,`aggregateUsingIndex`操作是有用的。概念上,如果我通过一组顶点构造了一个`VertexRDD[B]`,而`VertexRDD[B]`是
一些`RDD[(VertexID, A)]`中顶点的超集,那么我们就可以在聚合以及随后索引`RDD[(VertexID, A)]`中重用索引。例如:
```scala
val setA: VertexRDD[Int] = VertexRDD(sc.parallelize(0L until 100L).map(id => (id, 1)))
val rddB: RDD[(VertexId, Double)] = sc.parallelize(0L until 100L).flatMap(id => List((id, 1.0), (id, 2.0)))
// There should be 200 entries in rddB
rddB.count
val setB: VertexRDD[Double] = setA.aggregateUsingIndex(rddB, _ + _)
// There should be 100 entries in setB
setB.count
// Joining A and B should now be fast!
val setC: VertexRDD[Double] = setA.innerJoin(setB)((id, a, b) => a + b)
```
## EdgeRDDs
`EdgeRDD[ED]`继承自`RDD[Edge[ED]]`,使用定义在[PartitionStrategy](https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.PartitionStrategy)的
各种分区策略中的一个在块分区中组织边。在每个分区中,边属性和相邻结构被分别保存,当属性值改变时,它们可以最大化的重用。
`EdgeRDD`暴露了三个额外的函数
```scala
// Transform the edge attributes while preserving the structure
def mapValues[ED2](f: Edge[ED] => ED2): EdgeRDD[ED2]
// Revere the edges reusing both attributes and structure
def reverse: EdgeRDD[ED]
// Join two `EdgeRDD`s partitioned using the same partitioning strategy.
def innerJoin[ED2, ED3](other: EdgeRDD[ED2])(f: (VertexId, VertexId, ED, ED2) => ED3): EdgeRDD[ED3]
```
在大多数的应用中,我们发现,EdgeRDD操作可以通过图操作者(graph operators)或者定义在基本RDD中的操作来完成。
- Introduction
- 快速上手
- Spark Shell
- 独立应用程序
- 开始翻滚吧!
- RDD编程基础
- 基础介绍
- 外部数据集
- RDD 操作
- 转换Transformations
- map与flatMap解析
- 动作Actions
- RDD持久化
- RDD容错机制
- 传递函数到 Spark
- 使用键值对
- RDD依赖关系与DAG
- 共享变量
- Spark Streaming
- 一个快速的例子
- 基本概念
- 关联
- 初始化StreamingContext
- 离散流
- 输入DStreams
- DStream中的转换
- DStream的输出操作
- 缓存或持久化
- Checkpointing
- 部署应用程序
- 监控应用程序
- 性能调优
- 减少批数据的执行时间
- 设置正确的批容量
- 内存调优
- 容错语义
- Spark SQL
- 概述
- SparkSQLvsHiveSQL
- 数据源
- RDDs
- parquet文件
- JSON数据集
- Hive表
- 数据源例子
- join操作
- 聚合操作
- 性能调优
- 其他
- Spark SQL数据类型
- 其它SQL接口
- 编写语言集成(Language-Integrated)的相关查询
- GraphX编程指南
- 开始
- 属性图
- 图操作符
- Pregel API
- 图构造者
- 部署
- 顶点和边RDDs
- 图算法
- 例子
- 更多文档
- 提交应用程序
- 独立运行Spark
- 在yarn上运行Spark
- Spark配置
- RDD 持久化