# Checkpointing
一个流应用程序必须全天候运行,所有必须能够解决应用程序逻辑无关的故障(如系统错误,JVM崩溃等)。为了使这成为可能,Spark Streaming需要checkpoint足够的信息到容错存储系统中,
以使系统从故障中恢复。
- Metadata checkpointing:保存流计算的定义信息到容错存储系统如HDFS中。这用来恢复应用程序中运行worker的节点的故障。元数据包括
- Configuration :创建Spark Streaming应用程序的配置信息
- DStream operations :定义Streaming应用程序的操作集合
- Incomplete batches:操作存在队列中的未完成的批
- Data checkpointing :保存生成的RDD到可靠的存储系统中,这在有状态transformation(如结合跨多个批次的数据)中是必须的。在这样一个transformation中,生成的RDD依赖于之前
批的RDD,随着时间的推移,这个依赖链的长度会持续增长。在恢复的过程中,为了避免这种无限增长。有状态的transformation的中间RDD将会定时地存储到可靠存储系统中,以截断这个依赖链。
元数据checkpoint主要是为了从driver故障中恢复数据。如果transformation操作被用到了,数据checkpoint即使在简单的操作中都是必须的。
## 何时checkpoint
应用程序在下面两种情况下必须开启checkpoint
- 使用有状态的transformation。如果在应用程序中用到了`updateStateByKey`或者`reduceByKeyAndWindow`,checkpoint目录必需提供用以定期checkpoint RDD。
- 从运行应用程序的driver的故障中恢复过来。使用元数据checkpoint恢复处理信息。
注意,没有前述的有状态的transformation的简单流应用程序在运行时可以不开启checkpoint。在这种情况下,从driver故障的恢复将是部分恢复(接收到了但是还没有处理的数据将会丢失)。
这通常是可以接受的,许多运行的Spark Streaming应用程序都是这种方式。
## 怎样配置Checkpointing
在容错、可靠的文件系统(HDFS、s3等)中设置一个目录用于保存checkpoint信息。着可以通过`streamingContext.checkpoint(checkpointDirectory)`方法来做。这运行你用之前介绍的
有状态transformation。另外,如果你想从driver故障中恢复,你应该以下面的方式重写你的Streaming应用程序。
- 当应用程序是第一次启动,新建一个StreamingContext,启动所有Stream,然后调用`start()`方法
- 当应用程序因为故障重新启动,它将会从checkpoint目录checkpoint数据重新创建StreamingContext
```scala
// Function to create and setup a new StreamingContext
def functionToCreateContext(): StreamingContext = {
val ssc = new StreamingContext(...) // new context
val lines = ssc.socketTextStream(...) // create DStreams
...
ssc.checkpoint(checkpointDirectory) // set checkpoint directory
ssc
}
// Get StreamingContext from checkpoint data or create a new one
val context = StreamingContext.getOrCreate(checkpointDirectory, functionToCreateContext _)
// Do additional setup on context that needs to be done,
// irrespective of whether it is being started or restarted
context. ...
// Start the context
context.start()
context.awaitTermination()
```
如果`checkpointDirectory`存在,上下文将会利用checkpoint数据重新创建。如果这个目录不存在,将会调用`functionToCreateContext`函数创建一个新的上下文,建立DStreams。
请看[RecoverableNetworkWordCount](https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples/streaming/RecoverableNetworkWordCount.scala)例子。
除了使用`getOrCreate`,开发者必须保证在故障发生时,driver处理自动重启。只能通过部署运行应用程序的基础设施来达到该目的。在部署章节将有更进一步的讨论。
注意,RDD的checkpointing有存储成本。这会导致批数据(包含的RDD被checkpoint)的处理时间增加。因此,需要小心的设置批处理的时间间隔。在最小的批容量(包含1秒的数据)情况下,checkpoint每批数据会显著的减少
操作的吞吐量。相反,checkpointing太少会导致谱系以及任务大小增大,这会产生有害的影响。因为有状态的transformation需要RDD checkpoint。默认的间隔时间是批间隔时间的倍数,最少10秒。它可以通过`dstream.checkpoint`
来设置。典型的情况下,设置checkpoint间隔是DStream的滑动间隔的5-10大小是一个好的尝试。
- Introduction
- 快速上手
- Spark Shell
- 独立应用程序
- 开始翻滚吧!
- RDD编程基础
- 基础介绍
- 外部数据集
- RDD 操作
- 转换Transformations
- map与flatMap解析
- 动作Actions
- RDD持久化
- RDD容错机制
- 传递函数到 Spark
- 使用键值对
- RDD依赖关系与DAG
- 共享变量
- Spark Streaming
- 一个快速的例子
- 基本概念
- 关联
- 初始化StreamingContext
- 离散流
- 输入DStreams
- DStream中的转换
- DStream的输出操作
- 缓存或持久化
- Checkpointing
- 部署应用程序
- 监控应用程序
- 性能调优
- 减少批数据的执行时间
- 设置正确的批容量
- 内存调优
- 容错语义
- Spark SQL
- 概述
- SparkSQLvsHiveSQL
- 数据源
- RDDs
- parquet文件
- JSON数据集
- Hive表
- 数据源例子
- join操作
- 聚合操作
- 性能调优
- 其他
- Spark SQL数据类型
- 其它SQL接口
- 编写语言集成(Language-Integrated)的相关查询
- GraphX编程指南
- 开始
- 属性图
- 图操作符
- Pregel API
- 图构造者
- 部署
- 顶点和边RDDs
- 图算法
- 例子
- 更多文档
- 提交应用程序
- 独立运行Spark
- 在yarn上运行Spark
- Spark配置
- RDD 持久化