## 题目描述
输入n个整数,输出其中最小的k个。
## [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.01.md#分析与解法)分析与解法
### [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.01.md#解法一)解法一
要求一个序列中最小的k个数,按照惯有的思维方式,则是先对这个序列从小到大排序,然后输出前面的最小的k个数。
至于选取什么的排序方法,我想你可能会第一时间想到快速排序(我们知道,快速排序平均所费时间为`n*logn`),然后再遍历序列中前k个元素输出即可。因此,总的时间复杂度:`O(n * log n)+O(k)=O(n * log n)`。
### [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.01.md#解法二)解法二
咱们再进一步想想,题目没有要求最小的k个数有序,也没要求最后n-k个数有序。既然如此,就没有必要对所有元素进行排序。这时,咱们想到了用选择或交换排序,即:
1、遍历n个数,把最先遍历到的k个数存入到大小为k的数组中,假设它们即是最小的k个数;
2、对这k个数,利用选择或交换排序找到这k个元素中的最大值kmax(找最大值需要遍历这k个数,时间复杂度为`O(k)`);
3、继续遍历剩余n-k个数。假设每一次遍历到的新的元素的值为x,把x与kmax比较:如果`x = kmax`,则继续遍历不更新数组。
每次遍历,更新或不更新数组的所用的时间为`O(k)`或`O(0)`。故整趟下来,时间复杂度为`n*O(k)=O(n*k)`。
### [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.01.md#解法三)解法三
更好的办法是维护容量为k的最大堆,原理跟解法二的方法相似:
* 1、用容量为k的最大堆存储最先遍历到的k个数,同样假设它们即是最小的k个数;
* 2、堆中元素是有序的,令k1<k2<...<kmax(kmax设为最大堆中的最大元素)
* 3、遍历剩余n-k个数。假设每一次遍历到的新的元素的值为x,把x与堆顶元素kmax比较:如果`x < kmax`,用x替换kmax,然后更新堆(用时logk);否则不更新堆。
这样下来,总的时间复杂度:`O(k+(n-k)*logk)=O(n*logk)`。此方法得益于堆中进行查找和更新的时间复杂度均为:`O(logk)`(若使用解法二:在数组中找出最大元素,时间复杂度:`O(k))`。
### [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.01.md#解法四)解法四
在《数据结构与算法分析--c语言描述》一书,第7章第7.7.6节中,阐述了一种在平均情况下,时间复杂度为`O(N)`的快速选择算法。如下述文字:
* 选取S中一个元素作为枢纽元v,将集合S-{v}分割成S1和S2,就像快速排序那样
* 如果k <= |S1|,那么第k个最小元素必然在S1中。在这种情况下,返回QuickSelect(S1, k)。
* 如果k = 1 + |S1|,那么枢纽元素就是第k个最小元素,即找到,直接返回它。
* 否则,这第k个最小元素就在S2中,即S2中的第(k - |S1| - 1)个最小元素,我们递归调用并返回QuickSelect(S2, k - |S1| - 1)。
此算法的平均运行时间为O(n)。
示例代码如下:
~~~
//QuickSelect 将第k小的元素放在 a[k-1]
void QuickSelect( int a[], int k, int left, int right )
{
int i, j;
int pivot;
if( left + cutoff <= right )
{
pivot = median3( a, left, right );
//取三数中值作为枢纽元,可以很大程度上避免最坏情况
i = left; j = right - 1;
for( ; ; )
{
while( a[ ++i ] < pivot ){ }
while( a[ --j ] > pivot ){ }
if( i < j )
swap( &a[ i ], &a[ j ] );
else
break;
}
//重置枢纽元
swap( &a[ i ], &a[ right - 1 ] );
if( k <= i )
QuickSelect( a, k, left, i - 1 );
else if( k > i + 1 )
QuickSelect( a, k, i + 1, right );
}
else
InsertSort( a + left, right - left + 1 );
}
~~~
这个快速选择SELECT算法,类似快速排序的划分方法。N个数存储在数组S中,再从数组中选取“中位数的中位数”作为枢纽元X,把数组划分为Sa和Sb俩部分,Sa<=X<=Sb,如果要查找的k个元素小于Sa的元素个数,则返回Sa中较小的k个元素,否则返回Sa中所有元素+Sb中小的k-|Sa|个元素,这种解法在平均情况下能做到`O(n)`的复杂度。
更进一步,《算法导论》第9章第9.3节介绍了一个最坏情况下亦为O(n)时间的SELECT算法,有兴趣的读者可以参看。
## [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.01.md#举一反三)举一反三
1、谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做?
分析:
~~~
“假设两个整数数组为A和B,各有N个元素,任意两个数的和组成的数组C有N^2个元素。
那么可以把这些和看成N个有序数列:
A[1]+B[1] <= A[1]+B[2] <= A[1]+B[3] <=…
A[2]+B[1] <= A[2]+B[2] <= A[2]+B[3] <=…
…
A[N]+B[1] <= A[N]+B[2] <= A[N]+B[3] <=…
问题转变成,在这N^2个有序数列里,找到前k小的元素”
~~~
2、有两个序列A和B,A=(a1,a2,...,ak),B=(b1,b2,...,bk),A和B都按升序排列。对于1<=i,j<=k,求k个最小的(ai+bj)。要求算法尽量高效。
3、给定一个数列a1,a2,a3,...,an和m个三元组表示的查询,对于每个查询(i,j,k),输出ai,ai+1,...,aj的升序排列中第k个数。
- 关于
- 第一部分 数据结构
- 第一章 字符串
- 1.0 本章导读
- 1.1 旋转字符串
- 1.2 字符串包含
- 1.3 字符串转换成整数
- 1.4 回文判断
- 1.5 最长回文子串
- 1.6 字符串的全排列
- 1.10 本章习题
- 第二章 数组
- 2.0 本章导读
- 2.1 寻找最小的 k 个数
- 2.2 寻找和为定值的两个数
- 2.3 寻找和为定值的多个数
- 2.4 最大连续子数组和
- 2.5 跳台阶
- 2.6 奇偶排序
- 2.7 荷兰国旗
- 2.8 矩阵相乘
- 2.9 完美洗牌
- 2.15 本章习题
- 第三章 树
- 3.0 本章导读
- 3.1 红黑树
- 3.2 B树
- 3.3 最近公共祖先LCA
- 3.10 本章习题
- 第二部分 算法心得
- 第四章 查找匹配
- 4.1 有序数组的查找
- 4.2 行列递增矩阵的查找
- 4.3 出现次数超过一半的数字
- 第五章 动态规划
- 5.0 本章导读
- 5.1 最大连续乘积子串
- 5.2 字符串编辑距离
- 5.3 格子取数
- 5.4 交替字符串
- 5.10 本章习题
- 第三部分 综合演练
- 第六章 海量数据处理
- 6.0 本章导读
- 6.1 关联式容器
- 6.2 分而治之
- 6.3 simhash算法
- 6.4 外排序
- 6.5 MapReduce
- 6.6 多层划分
- 6.7 Bitmap
- 6.8 Bloom filter
- 6.9 Trie树
- 6.10 数据库
- 6.11 倒排索引
- 6.15 本章习题
- 第七章 机器学习
- 7.1 K 近邻算法
- 7.2 支持向量机
- 附录 更多题型
- 附录A 语言基础
- 附录B 概率统计
- 附录C 智力逻辑
- 附录D 系统设计
- 附录E 操作系统
- 附录F 网络协议