## 题目描述
在一个m行n列二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
例如下面的二维数组就是每行、每列都递增排序。如果在这个数组中查找数字6,则返回true;如果查找数字5,由于数组不含有该数字,则返回false。
[![img](http://box.kancloud.cn/2015-07-06_5599faf149aec.gif)](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/images/23~24/23.1.gif)
## [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/04.02.md#分析与解法)分析与解法
### [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/04.02.md#解法一分治法)解法一、分治法
这种行和列分别递增的矩阵,有一个专有名词叫做杨氏矩阵,由剑桥大学数学家杨表在1900年推提出,在这个矩阵中的查找,俗称杨氏矩阵查找。
以查找数字6为例,因为矩阵的行和列都是递增的,所以整个矩阵的对角线上的数字也是递增的,故我们可以在对角线上进行二分查找,如果要找的数是6介于对角线上相邻的两个数4、10,可以排除掉左上和右下的两个矩形,而在左下和右上的两个矩形继续递归查找,如下图所示:
[![img](http://box.kancloud.cn/2015-07-06_5599fafddbffa.gif)](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/images/23~24/23.2.gif)
### [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/04.02.md#解法二定位法)解法二、定位法
首先直接定位到最右上角的元素,再配以二分查找,比要找的数(6)大就往左走,比要找数(6)的小就往下走,直到找到要找的数字(6)为止,这个方法的时间复杂度O(m+n)。如下图所示:
[![img](http://box.kancloud.cn/2015-07-06_5599fb0670f4e.gif)](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/images/23~24/23.3.gif)
关键代码如下所示:
~~~
#define ROW 4
#define COL 4
bool YoungMatrix(int array[][COL], int searchKey){
int i = 0, j = COL - 1;
int var = array[i][j];
while (true){
if (var == searchKey)
return true;
else if (var < searchKey && i < ROW - 1)
var = array[++i][j];
else if (var > searchKey && j > 0)
var = array[i][--j];
else
return false;
}
}
~~~
## [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/04.02.md#举一反三)举一反三
1、给定 n×n 的实数矩阵,每行和每列都是递增的,求这 n^2 个数的中位数。
2、我们已经知道杨氏矩阵的每行的元素从左到右单调递增,每列的元素从上到下也单调递增的矩阵。那么,如果给定从1-n这n个数,我们可以构成多少个杨氏矩阵呢?
例如n = 4的时候,我们可以构成1行4列的矩阵:
~~~
1 2 3 4
~~~
2个2行2列的矩阵:
~~~
1 2
3 4
~~~
和
~~~
1 3
2 4
~~~
还有一个4行1列的矩阵
~~~
1
2
3
4
~~~
因此输出4。
- 关于
- 第一部分 数据结构
- 第一章 字符串
- 1.0 本章导读
- 1.1 旋转字符串
- 1.2 字符串包含
- 1.3 字符串转换成整数
- 1.4 回文判断
- 1.5 最长回文子串
- 1.6 字符串的全排列
- 1.10 本章习题
- 第二章 数组
- 2.0 本章导读
- 2.1 寻找最小的 k 个数
- 2.2 寻找和为定值的两个数
- 2.3 寻找和为定值的多个数
- 2.4 最大连续子数组和
- 2.5 跳台阶
- 2.6 奇偶排序
- 2.7 荷兰国旗
- 2.8 矩阵相乘
- 2.9 完美洗牌
- 2.15 本章习题
- 第三章 树
- 3.0 本章导读
- 3.1 红黑树
- 3.2 B树
- 3.3 最近公共祖先LCA
- 3.10 本章习题
- 第二部分 算法心得
- 第四章 查找匹配
- 4.1 有序数组的查找
- 4.2 行列递增矩阵的查找
- 4.3 出现次数超过一半的数字
- 第五章 动态规划
- 5.0 本章导读
- 5.1 最大连续乘积子串
- 5.2 字符串编辑距离
- 5.3 格子取数
- 5.4 交替字符串
- 5.10 本章习题
- 第三部分 综合演练
- 第六章 海量数据处理
- 6.0 本章导读
- 6.1 关联式容器
- 6.2 分而治之
- 6.3 simhash算法
- 6.4 外排序
- 6.5 MapReduce
- 6.6 多层划分
- 6.7 Bitmap
- 6.8 Bloom filter
- 6.9 Trie树
- 6.10 数据库
- 6.11 倒排索引
- 6.15 本章习题
- 第七章 机器学习
- 7.1 K 近邻算法
- 7.2 支持向量机
- 附录 更多题型
- 附录A 语言基础
- 附录B 概率统计
- 附录C 智力逻辑
- 附录D 系统设计
- 附录E 操作系统
- 附录F 网络协议