想要更好地理解红黑树,可以先理解二叉查找树和2-3树。为何呢?首先,二叉查找树中的结点是2-结点(一个键两条链),引入3-结点(两个键三条链),即成2-3树;然后将2-3树中3-结点分解,即成红黑树,故结合二叉查找树易查找和2-3树易插入的特点,便成了红黑二叉查找树,简称红黑树。
进一步而言,理解了2-3树,也就理解了B树、B+树、B*树,因为2-3树就是一棵3阶的B树,而一颗3阶的B树各个结点关键字数满足1-2,故当结点关键字数多于2时则达到饱和,此时需要分裂结点,而结点关键字数少于1时则从兄弟结点“借”关键字补充。
但为何有了红黑树,还要发明B树呢?原因是,当计算机要处理的数据量一大,便无法一次性装入内存进行处理,于此,计算机会把大部分备用的数据存在磁盘中,有需要的时候,就从磁盘中调取数据到在内存中处理,如果处理时修改了数据,则再次将数据写入磁盘,如此导致了不断的磁盘IO读写,而树的高度越高,查找文件所需要的磁盘IO读写次数越多,所以为了减少磁盘的IO读写,要想办法进一步降低树的高度。 因此,具有多个孩子的B树便应运而生,因为B树每一个结点可以有几个到几千个孩子,使得在结点数目一定的情况下,树的高度会大大降低,从而有效减少磁盘IO读写消耗。
此外,无论是B树,还是B+树、B树,由于根或者树的上面几层被反复查询,所以树上层几块的数据可以存在内存中。换言之,B树、B+树、B树的根结点和部分顶层数据存在内存中,大部分下层数据存在磁盘上。
- 关于
- 第一部分 数据结构
- 第一章 字符串
- 1.0 本章导读
- 1.1 旋转字符串
- 1.2 字符串包含
- 1.3 字符串转换成整数
- 1.4 回文判断
- 1.5 最长回文子串
- 1.6 字符串的全排列
- 1.10 本章习题
- 第二章 数组
- 2.0 本章导读
- 2.1 寻找最小的 k 个数
- 2.2 寻找和为定值的两个数
- 2.3 寻找和为定值的多个数
- 2.4 最大连续子数组和
- 2.5 跳台阶
- 2.6 奇偶排序
- 2.7 荷兰国旗
- 2.8 矩阵相乘
- 2.9 完美洗牌
- 2.15 本章习题
- 第三章 树
- 3.0 本章导读
- 3.1 红黑树
- 3.2 B树
- 3.3 最近公共祖先LCA
- 3.10 本章习题
- 第二部分 算法心得
- 第四章 查找匹配
- 4.1 有序数组的查找
- 4.2 行列递增矩阵的查找
- 4.3 出现次数超过一半的数字
- 第五章 动态规划
- 5.0 本章导读
- 5.1 最大连续乘积子串
- 5.2 字符串编辑距离
- 5.3 格子取数
- 5.4 交替字符串
- 5.10 本章习题
- 第三部分 综合演练
- 第六章 海量数据处理
- 6.0 本章导读
- 6.1 关联式容器
- 6.2 分而治之
- 6.3 simhash算法
- 6.4 外排序
- 6.5 MapReduce
- 6.6 多层划分
- 6.7 Bitmap
- 6.8 Bloom filter
- 6.9 Trie树
- 6.10 数据库
- 6.11 倒排索引
- 6.15 本章习题
- 第七章 机器学习
- 7.1 K 近邻算法
- 7.2 支持向量机
- 附录 更多题型
- 附录A 语言基础
- 附录B 概率统计
- 附录C 智力逻辑
- 附录D 系统设计
- 附录E 操作系统
- 附录F 网络协议