### Guava Cache
Guava Cache是Google开源的Java重用工具集库Guava里的一款缓存工具,其主要实现的缓存功能有:
* 自动将entry节点加载进缓存结构中;
* 当缓存的数据超过设置的最大值时,使用LRU算法移除;
* 具备根据entry节点上次被访问或者写入时间计算它的过期机制;
* 缓存的key被封装在WeakReference引用内;
* 缓存的Value被封装在WeakReference或SoftReference引用内;
* 统计缓存使用过程中命中率、异常率、未命中率等统计数据。
范例:
```
LoadingCache<Long, ArrayList<Long>> cacheMap cacheMap = CacheBuilder.newBuilder()
.concurrencyLevel(10) //设置并发数
.expireAfterAccess(2, TimeUnit.HOURS) //设置缓存过期时间
.initialCapacity(size) //设置初始化容量
.maximumSize(size * 2L) //设置最大容量
.recordStats() // 开启Guava Cache的统计功能
.build(new CacheLoader<Long, ArrayList<Long>>() {
@Override
public ArrayList<Long> load(Long key) throws Exception {
logger.debug("Data is not found in the cache:[{}].Reloading from db.", key);
metricsCacheMap();
return (ArrayList<Long>) costSubjectService.getSubCostTypeById(key);
}
});
```
get(K, Callable<V>)这个方法实现了if cached, return; otherwise create, cache and return 模式
即如果cache了返回,如果没有通过callable接口的方法来create,然后cache,最后返回
适用性
缓存在很多场景下都是相当有用的。例如,计算或检索一个值的代价很高,并且对同样的输入需要不止一次获取值的时候,就应当考虑使用缓存。
Guava Cache与ConcurrentMap很相似,但也不完全一样。最基本的区别是ConcurrentMap会一直保存所有添加的元素,直到显式地移除。相对地,Guava Cache为了限制内存占用,通常都设定为自动回收元素。在某些场景下,尽管LoadingCache 不回收元素,它也是很有用的,因为它会自动加载缓存。
通常来说,Guava Cache适用于:
你愿意消耗一些内存空间来提升速度。
你预料到某些键会被查询一次以上。
缓存中存放的数据总量不会超出内存容量。(Guava Cache是单个应用运行时的本地缓存。它不把数据存放到文件或外部服务器。如果这不符合你的需求,请尝试Memcached这类工具)
如果你的场景符合上述的每一条,Guava Cache就适合你。
如同范例代码展示的一样,Cache实例通过CacheBuilder生成器模式获取,但是自定义你的缓存才是最有趣的部分。
注:如果你不需要Cache中的特性,使用ConcurrentHashMap有更好的内存效率——但Cache的大多数特性都很难基于旧有的ConcurrentMap复制,甚至根本不可能做到。
加载
在使用缓存前,首先问自己一个问题:有没有合理的默认方法来加载或计算与键关联的值?如果有的话,你应当使用CacheLoader。如果没有,或者你想要覆盖默认的加载运算,同时保留"获取缓存-如果没有-则计算"[get-if-absent-compute]的原子语义,你应该在调用get时传入一个Callable实例。缓存元素也可以通过Cache.put方法直接插入,但自动加载是首选的,因为它可以更容易地推断所有缓存内容的一致性。
CacheLoader
LoadingCache是附带CacheLoader构建而成的缓存实现。创建自己的CacheLoader通常只需要简单地实现V load(K key) throws Exception方法。例如,你可以用下面的代码构建LoadingCache:
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.maximumSize(1000)
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) throws AnyException {
return createExpensiveGraph(key);
}
});
...
try {
return graphs.get(key);
} catch (ExecutionException e) {
throw new OtherException(e.getCause());
}
从LoadingCache查询的正规方式是使用get(K)方法。这个方法要么返回已经缓存的值,要么使用CacheLoader向缓存原子地加载新值。由于CacheLoader可能抛出异常,LoadingCache.get(K)也声明为抛出ExecutionException异常。如果你定义的CacheLoader没有声明任何检查型异常,则可以通过getUnchecked(K)查找缓存;但必须注意,一旦CacheLoader声明了检查型异常,就不可以调用getUnchecked(K)。
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.expireAfterAccess(10, TimeUnit.MINUTES)
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) { // no checked exception
return createExpensiveGraph(key);
}
});
...
return graphs.getUnchecked(key);
getAll(Iterable<? extends K>)方法用来执行批量查询。默认情况下,对每个不在缓存中的键,getAll方法会单独调用CacheLoader.load来加载缓存项。如果批量的加载比多个单独加载更高效,你可以重载CacheLoader.loadAll来利用这一点。getAll(Iterable)的性能也会相应提升。
注:CacheLoader.loadAll的实现可以为没有明确请求的键加载缓存值。例如,为某组中的任意键计算值时,能够获取该组中的所有键值,loadAll方法就可以实现为在同一时间获取该组的其他键值。校注:getAll(Iterable<? extends K>)方法会调用loadAll,但会筛选结果,只会返回请求的键值对。
Callable
所有类型的Guava Cache,不管有没有自动加载功能,都支持get(K, Callable<V>)方法。这个方法返回缓存中相应的值,或者用给定的Callable运算并把结果加入到缓存中。在整个加载方法完成前,缓存项相关的可观察状态都不会更改。这个方法简便地实现了模式"如果有缓存则返回;否则运算、缓存、然后返回"。
Cache<Key, Graph> cache = CacheBuilder.newBuilder()
.maximumSize(1000)
.build(); // look Ma, no CacheLoader
...
try {
// If the key wasn't in the "easy to compute" group, we need to
// do things the hard way.
cache.get(key, new Callable<Key, Graph>() {
@Override
public Value call() throws AnyException {
return doThingsTheHardWay(key);
}
});
} catch (ExecutionException e) {
throw new OtherException(e.getCause());
}
显式插入
使用cache.put(key, value)方法可以直接向缓存中插入值,这会直接覆盖掉给定键之前映射的值。使用Cache.asMap()视图提供的任何方法也能修改缓存。但请注意,asMap视图的任何方法都不能保证缓存项被原子地加载到缓存中。进一步说,asMap视图的原子运算在Guava Cache的原子加载范畴之外,所以相比于Cache.asMap().putIfAbsent(K,
V),Cache.get(K, Callable<V>) 应该总是优先使用。
缓存回收
一个残酷的现实是,我们几乎一定没有足够的内存缓存所有数据。你你必须决定:什么时候某个缓存项就不值得保留了?Guava Cache提供了三种基本的缓存回收方式:基于容量回收、定时回收和基于引用回收。
基于容量的回收(size-based eviction)
如果要规定缓存项的数目不超过固定值,只需使用CacheBuilder.maximumSize(long)。缓存将尝试回收最近没有使用或总体上很少使用的缓存项。——警告:在缓存项的数目达到限定值之前,缓存就可能进行回收操作——通常来说,这种情况发生在缓存项的数目逼近限定值时。
另外,不同的缓存项有不同的“权重”(weights)——例如,如果你的缓存值,占据完全不同的内存空间,你可以使用CacheBuilder.weigher(Weigher)指定一个权重函数,并且用CacheBuilder.maximumWeight(long)指定最大总重。在权重限定场景中,除了要注意回收也是在重量逼近限定值时就进行了,还要知道重量是在缓存创建时计算的,因此要考虑重量计算的复杂度。
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.maximumWeight(100000)
.weigher(new Weigher<Key, Graph>() {
public int weigh(Key k, Graph g) {
return g.vertices().size();
}
})
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) { // no checked exception
return createExpensiveGraph(key);
}
});
定时回收(Timed Eviction)
CacheBuilder提供两种定时回收的方法:
expireAfterAccess(long, TimeUnit):缓存项在给定时间内没有被读/写访问,则回收。请注意这种缓存的回收顺序和基于大小回收一样。
expireAfterWrite(long, TimeUnit):缓存项在给定时间内没有被写访问(创建或覆盖),则回收。如果认为缓存数据总是在固定时候后变得陈旧不可用,这种回收方式是可取的。
如下文所讨论,定时回收周期性地在写操作中执行,偶尔在读操作中执行。
测试定时回收
对定时回收进行测试时,不一定非得花费两秒钟去测试两秒的过期。你可以使用Ticker接口和CacheBuilder.ticker(Ticker)方法在缓存中自定义一个时间源,而不是非得用系统时钟。
基于引用的回收(Reference-based Eviction)
通过使用弱引用的键、或弱引用的值、或软引用的值,Guava Cache可以把缓存设置为允许垃圾回收:
CacheBuilder.weakKeys():使用弱引用存储键。当键没有其它(强或软)引用时,缓存项可以被垃圾回收。因为垃圾回收仅依赖恒等式(==),使用弱引用键的缓存用==而不是equals比较键。
CacheBuilder.weakValues():使用弱引用存储值。当值没有其它(强或软)引用时,缓存项可以被垃圾回收。因为垃圾回收仅依赖恒等式(==),使用弱引用值的缓存用==而不是equals比较值。
CacheBuilder.softValues():使用软引用存储值。软引用只有在响应内存需要时,才按照全局最近最少使用的顺序回收。考虑到使用软引用的性能影响,我们通常建议使用更有性能预测性的缓存大小限定(见上文,基于容量回收)。使用软引用值的缓存同样用==而不是equals比较值。
显式清除
任何时候,你都可以显式地清除缓存项,而不是等到它被回收:
个别清除:Cache.invalidate(key)
批量清除:Cache.invalidateAll(keys)
清除所有缓存项:Cache.invalidateAll()
移除监听器
通过CacheBuilder.removalListener(RemovalListener),你可以声明一个监听器,以便缓存项被移除时做一些额外操作。缓存项被移除时,RemovalListener会获取移除通知[RemovalNotification],其中包含移除原因[RemovalCause]、键和值。
请注意,RemovalListener抛出的任何异常都会在记录到日志后被丢弃[swallowed]。
CacheLoader<Key, DatabaseConnection> loader = new CacheLoader<Key, DatabaseConnection> () {
public DatabaseConnection load(Key key) throws Exception {
return openConnection(key);
}
};
RemovalListener<Key, DatabaseConnection> removalListener = new RemovalListener<Key, DatabaseConnection>() {
public void onRemoval(RemovalNotification<Key, DatabaseConnection> removal) {
DatabaseConnection conn = removal.getValue();
conn.close(); // tear down properly
}
};
return CacheBuilder.newBuilder()
.expireAfterWrite(2, TimeUnit.MINUTES)
.removalListener(removalListener)
.build(loader);
警告:默认情况下,监听器方法是在移除缓存时同步调用的。因为缓存的维护和请求响应通常是同时进行的,代价高昂的监听器方法在同步模式下会拖慢正常的缓存请求。在这种情况下,你可以使用RemovalListeners.asynchronous(RemovalListener, Executor)把监听器装饰为异步操作。
清理什么时候发生?
使用CacheBuilder构建的缓存不会"自动"执行清理和回收工作,也不会在某个缓存项过期后马上清理,也没有诸如此类的清理机制。相反,它会在写操作时顺带做少量的维护工作,或者偶尔在读操作时做——如果写操作实在太少的话。
这样做的原因在于:如果要自动地持续清理缓存,就必须有一个线程,这个线程会和用户操作竞争共享锁。此外,某些环境下线程创建可能受限制,这样CacheBuilder就不可用了。
相反,我们把选择权交到你手里。如果你的缓存是高吞吐的,那就无需担心缓存的维护和清理等工作。如果你的 缓存只会偶尔有写操作,而你又不想清理工作阻碍了读操作,那么可以创建自己的维护线程,以固定的时间间隔调用Cache.cleanUp()。ScheduledExecutorService可以帮助你很好地实现这样的定时调度。
刷新
刷新和回收不太一样。正如LoadingCache.refresh(K)所声明,刷新表示为键加载新值,这个过程可以是异步的。在刷新操作进行时,缓存仍然可以向其他线程返回旧值,而不像回收操作,读缓存的线程必须等待新值加载完成。
如果刷新过程抛出异常,缓存将保留旧值,而异常会在记录到日志后被丢弃[swallowed]。
重载CacheLoader.reload(K, V)可以扩展刷新时的行为,这个方法允许开发者在计算新值时使用旧的值。
//有些键不需要刷新,并且我们希望刷新是异步完成的
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.maximumSize(1000)
.refreshAfterWrite(1, TimeUnit.MINUTES)
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) { // no checked exception
return getGraphFromDatabase(key);
}
public ListenableFuture<Key, Graph> reload(final Key key, Graph prevGraph) {
if (neverNeedsRefresh(key)) {
return Futures.immediateFuture(prevGraph);
}else{
// asynchronous!
ListenableFutureTask<Key, Graph> task=ListenableFutureTask.create(new Callable<Key, Graph>() {
public Graph call() {
return getGraphFromDatabase(key);
}
});
executor.execute(task);
return task;
}
}
});
CacheBuilder.refreshAfterWrite(long, TimeUnit)可以为缓存增加自动定时刷新功能。和expireAfterWrite相反,refreshAfterWrite通过定时刷新可以让缓存项保持可用,但请注意:缓存项只有在被检索时才会真正刷新(如果CacheLoader.refresh实现为异步,那么检索不会被刷新拖慢)。因此,如果你在缓存上同时声明expireAfterWrite和refreshAfterWrite,缓存并不会因为刷新盲目地定时重置,如果缓存项没有被检索,那刷新就不会真的发生,缓存项在过期时间后也变得可以回收。
其他特性
统计
CacheBuilder.recordStats()用来开启Guava Cache的统计功能。统计打开后,Cache.stats()方法会返回CacheStats对象以提供如下统计信息:
hitRate():缓存命中率;
averageLoadPenalty():加载新值的平均时间,单位为纳秒;
evictionCount():缓存项被回收的总数,不包括显式清除。
此外,还有其他很多统计信息。这些统计信息对于调整缓存设置是至关重要的,在性能要求高的应用中我们建议密切关注这些数据。
asMap视图
asMap视图提供了缓存的ConcurrentMap形式,但asMap视图与缓存的交互需要注意:
cache.asMap()包含当前所有加载到缓存的项。因此相应地,cache.asMap().keySet()包含当前所有已加载键;
asMap().get(key)实质上等同于cache.getIfPresent(key),而且不会引起缓存项的加载。这和Map的语义约定一致。
所有读写操作都会重置相关缓存项的访问时间,包括Cache.asMap().get(Object)方法和Cache.asMap().put(K, V)方法,但不包括Cache.asMap().containsKey(Object)方法,也不包括在Cache.asMap()的集合视图上的操作。比如,遍历Cache.asMap().entrySet()不会重置缓存项的读取时间。
中断
缓存加载方法(如Cache.get)不会抛出InterruptedException。我们也可以让这些方法支持InterruptedException,但这种支持注定是不完备的,并且会增加所有使用者的成本,而只有少数使用者实际获益。详情请继续阅读。
Cache.get请求到未缓存的值时会遇到两种情况:当前线程加载值;或等待另一个正在加载值的线程。这两种情况下的中断是不一样的。等待另一个正在加载值的线程属于较简单的情况:使用可中断的等待就实现了中断支持;但当前线程加载值的情况就比较复杂了:因为加载值的CacheLoader是由用户提供的,如果它是可中断的,那我们也可以实现支持中断,否则我们也无能为力。
如果用户提供的CacheLoader是可中断的,为什么不让Cache.get也支持中断?从某种意义上说,其实是支持的:如果CacheLoader抛出InterruptedException,Cache.get将立刻返回(就和其他异常情况一样);此外,在加载缓存值的线程中,Cache.get捕捉到InterruptedException后将恢复中断,而其他线程中InterruptedException则被包装成了ExecutionException。
原则上,我们可以拆除包装,把ExecutionException变为InterruptedException,但这会让所有的LoadingCache使用者都要处理中断异常,即使他们提供的CacheLoader不是可中断的。如果你考虑到所有非加载线程的等待仍可以被中断,这种做法也许是值得的。但许多缓存只在单线程中使用,它们的用户仍然必须捕捉不可能抛出的InterruptedException异常。即使是那些跨线程共享缓存的用户,也只是有时候能中断他们的get调用,取决于那个线程先发出请求。
对于这个决定,我们的指导原则是让缓存始终表现得好像是在当前线程加载值。这个原则让使用缓存或每次都计算值可以简单地相互切换。如果老代码(加载值的代码)是不可中断的,那么新代码(使用缓存加载值的代码)多半也应该是不可中断的。
如上所述,Guava Cache在某种意义上支持中断。另一个意义上说,Guava Cache不支持中断,这使得LoadingCache成了一个有漏洞的抽象:当加载过程被中断了,就当作其他异常一样处理,这在大多数情况下是可以的;但如果多个线程在等待加载同一个缓存项,即使加载线程被中断了,它也不应该让其他线程都失败(捕获到包装在ExecutionException里的InterruptedException),正确的行为是让剩余的某个线程重试加载。为此,我们记录了一个bug。然而,与其冒着风险修复这个bug,我们可能会花更多的精力去实现另一个建议AsyncLoadingCache,这个实现会返回一个有正确中断行为的Future对象。
- 概述
- CAP理论
- BASE理论
- ACID
- 分布式系统相关技术
- 主流数据库连接池
- 基础
- 系统单点
- 负载均衡
- HTTP重定向负载均衡
- DNS域名解析负载均衡
- 反向代理负载均衡
- IP负载均衡
- 数据链路层负载均衡
- 负载均衡算法
- 轮询法(Round Robin)
- 加权轮询(Weight Round Robin)
- 随机算法(Random)
- 源地址Hash算法
- 加权随机法(Weight Random)
- 最小连接数法(Least Connections)
- 接入层负载均衡
- 软件架构
- 性能
- 性能测试指标
- 响应时间
- 并发数
- 吞吐量
- 性能计数器
- 性能测试方法
- 性能测试报告
- 性能优化
- Web前端性能优化
- 应用服务器性能优化
- 可用性
- 服务降级
- 伸缩性
- 扩展性
- 事件驱动架构
- 安全性
- 信息加密技术
- 分布式系统概述
- 自动化
- 分布式唯一ID
- 幂等设计
- 分布式锁
- 脑裂
- 一致性原理
- Paxos
- Zab
- Raft
- 分布式远程服务调用
- RMI
- Spring RMI
- WebService
- SOA服务架构
- 微服务架构
- 微服务的九大特性
- 服务注册和发现
- 解决方案及组件
- 分布式网关
- 注册中心
- Zookeeper
- ZNode
- Watch接口
- 持久节点-配置中心实现原理
- 临时节点-注册中心
- Zookeeper选举
- Zookeeper角色
- ZooKeeper工作原理
- 选主流程
- 同步流程
- Leader工作流程
- Follower工作流程
- 常见限流算法
- 计数器算法
- 漏桶算法
- 令牌桶算法
- 滑动窗口
- 计数器&滑动窗口
- 断路器
- 大流量高并发高可用
- 高可用
- 高并发/大流量
- 分布式缓存系统
- 基本概念
- 缓存命中率
- 缓存最大元素
- 缓存回收策略
- 回收算法
- 缓存穿透与缓存雪崩
- CDN缓存
- 缓存分类
- memcached
- 客户端路由原理
- 内存管理机制
- Redis
- Redis数据模型
- redisObject/Redis type/Redis encoding
- 命令的类型检查和多态
- skiplist跳跃表
- 为什么使用跳跃表
- redis-内存管理机制
- Redis淘汰策略
- Redis持久化策略
- Redis并发竞争
- redis主从复制
- Redis集群实现方案
- Redis Cluster
- redis事务
- Redis-Sentinel
- Redis适用场景
- Redis客户端
- redis rehash原理
- dict数据结构
- 触发rehash的条件
- 渐进式rehash
- 渐进式rehash过程
- Redis多线程版本
- 缓存实际应用
- 堆缓存-Guava Cache
- 主要参数
- Caffeine
- Spring注解缓存
- 分布式存储
- Database
- AUTOCOMMIT
- 脏读&幻读&不可重复读
- 子查询
- 连接
- 内连接
- 自连接
- 自然连接
- 外连接
- 组合查询
- 隔离级别
- 数据库范式
- 索引实现机制
- 数据库拆分
- 表分区
- 分库
- 分表
- MySQL
- MySQL基础架构
- 锁分类
- 排它锁&独占锁
- 共享锁
- 间隙锁
- 表级锁
- 存储引擎
- 磁盘IO
- 磁盘结构图
- 磁盘数据读写原理
- MySQL索引原理
- B+树索引
- 局部性原理
- 索引数据结构
- 联合索引
- 最左前缀匹配原则
- 建索引的几大原则
- 数据文件和索引文件
- 执行计划explain
- 常见问题
- 数据页
- MYSQL单表存储量计算
- 回表
- 索引覆盖
- 索引下推
- 页分裂和页合并
- InnoDB
- innodb索引
- Innodb引擎的底层实现
- MyISAM
- MyISAM引擎的底层实现
- MVCC
- Next-Key Locks
- MySQL索引类型
- MYSQL复制
- 主从复制
- 读写分离
- MySQL Dual-Master
- 分库分表实现方案
- MySQL事务实现原理
- MYSQL调优
- 性能优化
- HBase
- 不停机分库分表迁移
- RDBMS&NoSQL
- 分布式事务
- 协议或事务模型
- X/Open XA协议
- 分布式事务编程接口规范JTA
- TCC模型
- 解决方案
- 两阶段提交2PC
- 三阶段提交3PC
- Seata
- 分布式事务Seata产品模块
- AT模式
- TCC模式
- Saga模式
- XA模式
- 基于消息中间件的最终一致性事务方案
- 消息队列
- AMQP
- JMS
- ActiveMQ
- RabbitMQ
- RocketMQ
- RocketMQ基本概念
- 主要特性
- 分区顺序消息
- 全局顺序消息
- 消息可靠性
- 定时消息
- 消息重试
- 死信队列
- 分布式事务消息
- RocketMQ架构
- Producer
- Consumer
- NameServer
- Broker
- RocketMQ设计
- 消息存储
- 页缓存与内存映射
- 消息刷盘
- 通信机制
- console控制台
- RocketMQ部署架构
- Kafka
- Pulsar
- MQ消息重复消费与丢失
- 主流消息队列比较
- 分布式调度系统
- 分布式搜索
- 分布式计算
- 架构案例
- 秒杀业务
- 秒杀整体架构
- 常见的监控系统
- 小米手机抢购秒杀方案
- 架构师领导艺术
- 架构师箴言
- 技术leader核心职责
- WEB服务器
- Servlet
- Servlet实现
- Servlet生命周期
- Servlet容器工作模式
- Servlet工作原理
- servlet线程安全
- CGI&FastCGI
- CGI
- FastCGI
- FastCGI与CGI特点
- CGI与Servlet比较
- HTTP Server
- Nginx
- Apache
- Nginx与Apache比较
- Application Server
- Tomcat
- Tomcat总体架构
- Connector
- 连接器核心功能
- ProtocolHandler
- EndPoint
- Processor
- Adapter
- Container
- 请求定位Servlet的过程
- Lifecycle生命周期
- Tomcat模块设计
- Tomcat实例
- Tomcat运行原理
- spring & servlet
- Tomcat启动流程
- Tomcat支持的I/O模型
- Tomcat应用层协议
- Tomcat类加载机制
- Tomcat类加载器
- Tomcat类加载器层次
- Apache+Tomcat
- 序列化
- XML&JSON
- JSON
- JAVA原生序列化
- hessian
- 常见中间件
- Canal
- Databus
- ELK日志套件
- 数据库连接池
- spring状态机
- 常见解决方案
- 二维码扫码登录原理
- 前沿技术
- Saas服务
- 服务网格(Service Mesh)
- 云原生
- 常见面试问题
- Redis持久化的几种方式
- Redis的缓存失效策略
- 附录
- 二将军问题
- 常见问题定位步骤
- 如何快速熟悉新系统
- 制定技术方案套路
- NUMA陷阱