import os
import numpy as np
from matplotlib import pyplot as plt
from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop
# data :浮点数数据组成的原始数组,标准化后
# lookback :输入数据应该包括过去多少个时间步。
# delay :目标应该在未来多少个时间步之后。
# min_index和 max_index :data数组中的索引,用于界定需要抽取哪些时间步。这有助于保存一部分数据用于验证、另一部分用于测试。
# shuffle :是打乱样本,还是按顺序抽取样本。
# batch_size :每个批量的样本数。
# step :数据采样的周期(单位:时间步)。我们将其设为6,为的是每小时抽取一个数据点。
def generator(data, lookback, delay, min_index, max_index,shuffle=False, batch_size=128, step=6):
if max_index is None:
max_index = len(data) - delay - 1
i = min_index + lookback
while 1:
if shuffle:
rows = np.random.randint(min_index + lookback, max_index, size=batch_size)
else:
if i + batch_size >= max_index:
i = min_index + lookback
rows = np.arange(i, min(i + batch_size, max_index))
i += len(rows)
samples = np.zeros((len(rows),
lookback // step,
data.shape[-1]))
targets = np.zeros((len(rows),))
for j, row in enumerate(rows):
indices = range(rows[j] - lookback, rows[j], step)
samples[j] = data[indices]
targets[j] = data[rows[j] + delay][1]
yield samples, targets
def evaluate_naive_method():
batch_maes = []
for step in range(val_steps):
samples, targets = next(val_gen)
preds = samples[:, -1, 1]
mae = np.mean(np.abs(preds - targets))
batch_maes.append(mae)
print(np.mean(batch_maes))
data_dir = r'E:\GPT2\Dog_Cat'
fname = os.path.join(data_dir, r'jena_climate_2009_2016.csv')
f = open(fname)
data = f.read()
f.close()
lines = data.split('\n')
header = lines[0].split(',')
lines = lines[1:]
print(header)
print(len(lines))
float_data = np.zeros((len(lines), len(header) - 1))
for i, line in enumerate(lines):
values = [float(x) for x in line.split(',')[1:]]
float_data[i, :] = values
mean = float_data[:200000].mean(axis=0)
float_data -= mean
std = float_data[:200000].std(axis=0)
float_data /= std
lookback = 1440
step = 6
delay = 144
batch_size = 128
train_gen = generator(float_data,
lookback=lookback,
delay=delay,
min_index=0,
max_index=200000,
shuffle=True,
step=step,
batch_size=batch_size)
val_gen = generator(float_data,
lookback=lookback,
delay=delay,
min_index=200001,
max_index=300000,
step=step,
batch_size=batch_size)
test_gen = generator(float_data,
lookback=lookback,
delay=delay,
min_index=300001,
max_index=None,
step=step,
batch_size=batch_size)
val_steps = (300000 - 200001 - lookback) //batch_size #为了查看整个验证集,需要从val_gen中抽取多少次
test_steps = (len(float_data) - 300001 - lookback) //batch_size
evaluate_naive_method()
celsius_mae = 0.29 * std[1]
model = Sequential()
model.add(layers.GRU(32,
dropout=0.2,
recurrent_dropout=0.2,
input_shape=(None, float_data.shape[-1])))
model.add(layers.Dense(1))
model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,
steps_per_epoch=500,
epochs=40,
validation_data=val_gen,
validation_steps=val_steps)
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
- 基础
- 张量tensor
- 整数序列(列表)=>张量
- 张量运算
- 张量运算的几何解释
- 层:深度学习的基础组件
- 模型:层构成的网络
- 训练循环 (training loop)
- 数据类型与层类型、keras
- Keras
- Keras 开发
- Keras使用本地数据
- fit、predict、evaluate
- K 折 交叉验证
- 二分类问题-基于梯度的优化-训练
- relu运算
- Dens
- 损失函数与优化器:配置学习过程的关键
- 损失-二分类问题
- 优化器
- 过拟合 (overfit)
- 改进
- 小结
- 多分类问题
- 回归问题
- 章节小结
- 机械学习
- 训练集、验证集和测试集
- 三种经典的评估方法
- 模型评估
- 如何准备输入数据和目标?
- 过拟合与欠拟合
- 减小网络大小
- 添加权重正则化
- 添加 dropout 正则化
- 通用工作流程
- 计算机视觉
- 卷积神经网络
- 卷积运算
- 卷积的工作原理
- 训练一个卷积神经网络
- 使用预训练的卷积神经网络
- VGG16
- VGG16详细结构
- 为什么不微调整个卷积基?
- 卷积神经网络的可视化
- 中间输出(中间激活)
- 过滤器
- 热力图
- 文本和序列
- 处理文本数据
- n-gram
- one-hot 编码 (one-hot encoding)
- 标记嵌入 (token embedding)
- 利用 Embedding 层学习词嵌入
- 使用预训练的词嵌入
- 循环神经网络
- 循环神经网络的高级用法
- 温度预测问题
- code
- 用卷积神经网络处理序列
- GRU 层
- LSTM层
- 多输入模型
- 回调函数
- ModelCheckpoint 与 EarlyStopping
- ReduceLROnPlateau
- 自定义回调函数
- TensorBoard_TensorFlow 的可视化框架
- 高级架构模式
- 残差连接
- 批标准化
- 批再标准化
- 深度可分离卷积
- 超参数优化
- 模型集成
- LSTM
- DeepDream
- 神经风格迁移
- 变分自编码器
- 生成式对抗网络
- 术语表