企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
## [两个盒子中球的颜色数相同的概率](https://leetcode-cn.com/problems/probability-of-a-two-boxes-having-the-same-number-of-distinct-balls/) #### 思路 根据Hard必死定律,周赛没做出来,继续拜读大佬解题 **阅读理解** * 这道题的中文翻译稍微有点容易出现误解,还是需要多读几遍理解意思 * 大概意思是:有两个盒子,需要把球随机的放到这两个盒子当中 * 最后计算两个盒子中颜色数相同情况的概率 * 题目要求 `请计算「两个盒子中球的颜色数相同」的情况的概率。`,比如说盒子1有3种颜色,盒子2也有三种颜色,不管颜色是什么。 这种情况都是符合条件的 **分析** * 所有的可能性,就是全排列的组合数,如下:(图片来自[huahua](https://space.bilibili.com/9880352?from=search&seid=1276580199457930821)大佬,我是[huahua](https://space.bilibili.com/9880352?from=search&seid=1276580199457930821)大佬的小迷弟,大家可以关注一波)![](https://img.kancloud.cn/3b/42/3b42e0609c033225ae974eaa6a2d42cf_1217x593.png) 对于示例2,应该有`$ 4! $`种可能性,但是1,2重复,这边需要去重,一共就为12中可能,如上图。全排列+去重,联想到 [47\. 全排列 II](https://leetcode-cn.com/problems/permutations-ii/)。 * 可以取出全排列的数量,然后在除以相同颜色的数量阶乘乘积,得到去重之后的排列组合数。 * 接着从中遍历出满足题目要求的,颜色数量相同的情况,进行比较得出答案 不出意外的TLE(苦),偶然发现 [国际版暴力解法](https://leetcode-cn.com/problems/probability-of-a-two-boxes-having-the-same-number-of-distinct-balls/solution/zhuan-ge-guo-ji-ban-ben-de-bao-li-jie-fa-you-mei-d/),居然可以AC!而且代码非常简洁,大佬牛批! #### 代码 python3 ``` class Solution: def multinomial(self, n): return factorial(sum(n))/prod([factorial(i) for i in n]) def getProbability(self, balls): k, n, Q = len(balls), sum(balls)// 2, 0 arrays = [range(0,i+1) for i in balls] t = list(product(*arrays)) for i in range(len(t)): if sum(t[i]) == n and t[i].count(0) == t[-i-1].count(0): Q += self.multinomial(t[i]) * self.multinomial(t[-i-1]) return Q / self.multinomial(list(balls)) ``` 本题TLE优化方案,可以使用**动态规划**进行求解。dp正在研究中,大家请耐心等待(菜鸡的挣扎) 未完待续。。。