# 一、概念
#### 1.堆heap
堆的本质是一种数组对象,数组下标从1开始
堆可以被视作一棵完全二叉树,二叉树的层次遍历结果与数组元素的顺序对应,树根为A[1]。
对于数组中第i个元素,其对应在二叉树中的父母孩子结点位置的计算如下:
```
PARENT(i)
return i/2
LEFT(i)
return 2i
RIGHT(i)
return 2i+1
```
#### 2.最大/小堆(max-heap/min-heap)
从二叉树的角度看,对于所有非root结点,满足`node->parent ≥ node`/`node->parent ≤ node`
从数组的角度看,对于所有下标大于1的元素,其下标为i,则满足`A[PARENT( i)] ≥ A[i]`/`A[PARENT( i)] ≤ A[i]`
#### 3.高度height
结点的高度:从结点到叶子所经过的边的数量,叶子结点的高度为0
二叉树的高度:树中高度最高的结点的高度,只有一个结点的树高度为0
堆的高度:把堆看所作二叉树时的高度
# 二、程序
#### 1.堆的结构
A[N]:堆数组
length[A]:数组中元素的个数
heap-size[A]:存放在A中的堆的元素个数
#### 2.在堆上的操作
(1)MAX-HEAPIFY(A, i)
(2)BUILD-MAX-HEAP(A)
(3)HEAPSORT(A)
#### 3.堆的应用
优先级队列
(1)HEAP-MAXIMUM(A)
(2)HEAP-INCREASE-KEY(A, i, key)
(3)HEAP-EXTRACT-KEY(A)
(4)MAX-HEAP-INSERT(A, key)
#### 4.堆代码
[产品代码](https://github.com/windmissing/exerciseForAlgorithmSecond/blob/master/src/chapter6/Heap.h)
[测试代码](https://github.com/windmissing/exerciseForAlgorithmSecond/blob/master/tst/chapter6/HeapTest.cpp)
#### 5.排序代码
[产品代码](https://github.com/windmissing/exerciseForAlgorithmSecond/blob/master/src/others/sort.cpp)
[测试代码](https://github.com/windmissing/exerciseForAlgorithmSecond/blob/master/tst/others/sortTest.cpp)
# 三、练习
### 6.1 堆
##### 6.1-1
最多2^(h+1) - 1, 最少2 ^ h(当树中只有一个结点时,高度是0)
##### 6.1-2
```
上一题结论 ==> 2^h <= n <= 2^(h+1) - 1
==> h <= lgn <= h + 1
==> lgn = h
```
##### 6.1-3
```
max-heap的定义
==>A[PARENT(i)]>=A[i]
==>A[1]>A[2],A[3]
==>A[1]>A[4],A[5],A[6],A[7]
==>……
==>the root of the subtree contains the largest value
```
##### 6.1-4
叶子上
##### 6.1-5
是最小堆或最大堆
##### 6.1-6
不是,7是6的左孩子,但7>6
##### 6.1-7
```
A[2i]、A[2i+1]是A[i]的孩子
==>若2i<=n&&2i+1<=n,则A[i]有孩子
==>若2i>n,则A[i]是叶子
==>the leaves are the nodes indexed by ?n/2 ? + 1, ?n/2 ? + 2, . . . , n
```
### 6.2 保持堆的性质
##### 6.2-1
A = {27,17,3,16,13,10,1,5,7,12,4,8,9,0}
A = {27,17,10,16,13,3,1,5,7,12,4,8,9,0}
A = {27,17,10,16,13,9,1,5,7,12,4,8,3,0}
##### 6.2-2
```
MIN-HEAPIFY(A, i)
1 l <- LEFT(i)
2 r <- RIGHT(i)
3 if l <= heap-size[A] and A[l] < A[i]
4 then smallest <- l
5 else smallest <- i
6 if r <= heap-size[A] and A[r] < [smallest]
7 then smallest <- r
8 if smallest != i
9 then exchange A[i] <-> A[smallest]
10 MIN_HEAPIFY(A, smallest)
```
##### 6.2-3
没有效果,程序终止
##### 6.2-4
i > heap-size[A]/2时,是叶子结点,也没有效果,程序终止
##### 6.2-5
我还是比较喜欢用C++,不喜欢用伪代码
```c++
void Heap::Max_Heapify(int i)
{
int l = (LEFT(i)), r = (RIGHT(i)), largest;
//选择i、i的左、i的右三个结点中值最大的结点
if(l <= heap_size && A[l] > A[i])
largest = l;
else largest = i;
if(r <= heap_size && A[r] > A[largest])
largest = r;
//如果根最大,已经满足堆的条件,函数停止
//否则
while(largest != i)
{
//根与值最大的结点交互
swap(A[i], A[largest]);
//交换可能破坏子树的堆,重新调整子树
i = largest;
l = (LEFT(i)), r = (RIGHT(i));
//选择i、i的左、i的右三个结点中值最大的结点
if(l <= heap_size && A[l] > A[i])
largest = l;
else largest = i;
if(r <= heap_size && A[r] > A[largest])
largest = r;
}
}
```
##### 6.2-6
MAX-HEAPIFY中每循环一次,当前处理的结点的高度就会+1,最坏情况下,结点是根结点的时候停止,此时结点高度是logn,因此最坏运行时间是logn
### 6.3 建堆
##### 6.3-1
```
A = {5,3,17,10,84,19,6,22,9}
A = {5,3,17,22,84,19,6,10,9}
A = {5,3,19,22,84,17,6,10,9}
A = {5,84,19,22,3,17,6,10,9}
A = {84,5,19,22,3,17,6,10,9}
A = {84,22,19,5,3,17,6,10,9}
A = {84,22,19,10,3,17,6,5,9}
```
##### 6.3-2
因为MAX-HEAPIFY中使用条件是当前结点的左孩子和右孩子都是堆
假设对i执行MAX-HEAPIFY操作,当i=j时循环停止,结果是从i到j的这条路径上的点满足最大堆的性质,但是PARENT[i]不一定满足。
甚至有可能在满足A[PARENT(i)]>A[i]的情况下因为执行了MAX-HEAPIFY(i)而导致A[PARENT(i)]<A[i],例如下图,
因此一定要先执行MAX-HEAPIFY(i)才能执行MAX-HEAPIFY(PARENT(i))
![](https://box.kancloud.cn/2016-02-02_56b02bd032fb2.jpg)
##### 6.3-3
对于一个含有n个结点的堆,最多可以有f(h)个叶子结点
已知,当h=0时,f(h)=(n+1)/2
高度为h的结点是高度为h-1的结点的父结点,因此f(h) = (f(h-1) + 1) / 2
```
f(0) = (n + 1) / 2 = 1 + (n-1)/2
f(1) = (f(0) +1) / 2 = 1 + (n-1)/(2^2)
f(2) = (f(1) +1) / 2 = 1 + (n-1)/(2^3)
……
f(h) = 1 + (n-1) / (2 ^ (h+1))
```
因为f(h)必须是整数,所以
```
f(h) = floor[1 + (n-1) / (2 ^ (h+1)) ]
= ceilling[(n-1) / (2 ^ (h+1))]
≤ ceilling[n / (2 ^ (h+1))]
```
得证:在任一含n个元素的堆中,至多有ceiling(n/(2^(h+1)))个高度为h的节点。
参考http://blog.csdn.net/lqh604/article/details/7381893
### 6.4 堆排序的算法
##### 6.4-1
A = {5,13,2,25,7,17,20,8,4}
A = {25,13,20,8,7,17,2,5,4}
A = {4,13,20,8,7,17,2,5,25}
A = {20,13,17,8,7,4,2,5,25}
A = {5,13,17,8,7,4,2,20,25}
A = {17,13,5,8,7,4,2,20,25}
A = {2,13,5,8,7,4,17,20,25}
A = {13,8,5,2,7,4,17,20,25}
A = {4,8,5,2,7,13,17,20,25}
A = {8,7,5,2,4,13,17,20,25}
A = {4,7,5,2,8,13,17,20,25}
A = {7,4,5,2,8,13,17,20,25}
A = {2,4,5,7,8,13,17,20,25}
A = {5,4,2,7,8,13,17,20,25}
A = {2,4,5,7,8,13,17,20,25}
A = {4,2,5,7,8,13,17,20,25}
A = {2,4,5,7,8,13,17,20,25}
A = {2,4,5,7,8,13,17,20,25}
##### 6.4-2
初始化:第一轮迭代之前,i=length[A],则i=n。显然,循环不变式成立。
保持:每次迭代前,对于一个给定的i。假设循环不变式成立,则子数组A[1..i]是一个包含了A[1..n]中的i个最小元素的最大堆;而子数组A[i+1..n]包含了已排序的A[1..n]中的n-i个最大元素。经过3~5行代码的操作后,使得子数组A[1..i-1]是一个包含了A[1..n]中的i-1个最小元素的最大堆;子数组A[i..n]包含了已排序的A[1..n]中的n-i+1个最大元素。则可以保证i=i-1后的下一次迭代开始前,循环不变式成立。
终止:循环终止时,i=1。根据循环不变式,子数组A[i+1..n]即A[2..n]包含了已排序的A[1..n]中的n-1个最大元素,所以数组A是已排好序的。
##### 6.4-3
按递增排序的数组,运行时间是nlgn
按递减排序的数组,运行时间是n
#####6.4-4
堆排序算法中,对堆中每个结点的处理过程为:
(1)取下头结点,O(1)
(2)把最后一个结点移到根结点位置,O(1)
(3)对该结点执行MAX-HEAPIFY,最坏时间为O(lgn)
对每个结点处理的最坏时间是O(lgn),每个结点最多处理一次。
因此最坏运行时间是O(nlgn)
### 6.5 优先级队列
##### 6.5-1
A = {15,13,9,5,12,8,7,4,0,6,2,1}
A = {1,13,9,5,12,8,7,4,0,6,2,1}
A = {13,1,9,5,12,8,7,4,0,6,2,1}
A = {13,12,9,5,1,8,7,4,0,6,2,1}
A = {13,12,9,5,6,8,7,4,0,1,2,1}
return 15
##### 6.5-2
A = {15,13,9,5,12,8,7,4,0,6,2,1}
A = {15,13,9,5,12,8,7,4,0,6,2,1,-2147483647}
A = {15,13,9,5,12,8,7,4,0,6,2,1,10}
A = {15,13,9,5,12,10,7,4,0,6,2,1,8}
A = {15,13,10,5,12,9,7,4,0,6,2,1,8}
##### 6.5-3
```
HEAP-MINIMUM(A)
1 return A[1]
HEAP-EXTRACR-MIN(A)
1 if heap-size[A] < 1
2 then error "heap underflow"
3 min <- A[1]
4 A[1] <- A[heap-size[A]]
5 heap-size[A] <- heap-size[A] - 1
6 MIN-HEAPIFY(A, 1)
7 return min
HEAP-DECREASE-KEY(A, i, key)
1 if key > A[i]
2 then error "new key is smaller than current key"
3 A[i] <- key
4 while i > 1 and A[PARENT(i)] > A[i]
5 do exchange A[i] <-> A[PARENT(i)]
6 i <- PARENT(i)
MIN-HEAP-INSERT
1 heap-size[A] <- heap-size[A] + 1
2 A[heap-size[A]] <- 0x7fffffff
3 HEAP-INCREASE-KEY(A, heap-size[A], key)
```
##### 6.5-4
要想插入成功,key必须大于这个初值。key可能是任意数,因此初值必须是无限小
#####6.5-6
FIFO:以进入队列的时间作为权值建立最小堆
栈:以进入栈的时间作为权值建立最大堆
#####6.5-7
```c++
void Heap::Heap_Delete(int i)
{
if(i > heap_size)
{
cout<<"there's no node i"<<endl;
exit(0);
}
int key = A[heap_size];
heap_size--;
if(key > A[i]) //最后一个结点不一定比中间的结点最
Heap_Increase_Key(i, key);
else
{
A[i] = key;
Max_Heapify(i);
}
}
```
##### 6.5-8
step1:取每个链表的第一个元素,构造成一个含有k个元素的堆
step2:把根结点的值记入排序结果中。
step3:判断根结点所在的链表,若该链表为空,则go to step4,否则go to step5
step4:删除根结点,调整堆,go to step2
step5:把根结点替换为原根结点所在链表中的第一个元素,调整堆,go to step 2
[产品代码](https://github.com/windmissing/exerciseForAlgorithmSecond/blob/master/src/chapter6/Exercise6_5_8.cpp)
[测试代码](https://github.com/windmissing/exerciseForAlgorithmSecond/blob/master/tst/chapter6/Exercise6_5_8Test.cpp)
# 四、思考题
### 6-1 用插入方法建堆
```c++
void Heap::Build_Max_Heap()
{
heap_size = 1;
//从堆中最后一个元素开始,依次调整每个结点,使符合堆的性质
for(int i = 2; i <= length; i++)
Max_Heap_Insert(A[i]);
}
```
答:
a)A = {1,2,3};
b)MAX-HEAP-INSERT的过程如下:
加入大小为-0x7FFFFFFF的新结点,O(1)
将该值调整为key,最坏情况下为O(lgn)
对每个结点都要执行一次插入操作,因此最坏时间为O(nlgn)
### 6-2 对d叉堆的分析
a)根结点是A[1],根结点的孩子是A[2],A[3],……,A[d+1]
PARENT(i) = (i - 2 ) / d + 1
CHILD(i, j ) = d * (i - 1) + j + 1
b)lgn/lgd
c)HEAP-EXTRACR-MAX(A)与二叉堆的实现相同,其调用的MAX-HEAPIFY(A, i)要做部分更改,时间复杂度是O(lgn/lgd * d)
```
MAX-HEAPIFY(A, i)
1 largest <- i
2 for j <- 1 to d
3 k <- CHILD(i, j)
4 if k <= heap-size[A] and A[k] > A[largest]
5 largest <- k
6 if largest != i
7 then exchange A[i] <-> A[largest]
8 MAX-HEAPIFY(A, largest)
```
d)和二叉堆的实现完全一样,时间复杂度是O(lgn/lgd)
e)和二叉堆的实现完全一样,时间复杂度是O(lgn/lgd)
### 6-3 Young氏矩阵
见[算法导论 6-3 Young氏矩阵](6-3 Young氏矩阵.md)
- 前言
- 第6章 堆排序
- 6-3 Young氏矩阵
- 第7章 快速排序
- 第8章 线性时间排序
- 第9章 排序和顺序统计学算法导论
- 算法导论 9.1-1 求第二小元素
- 第10章 10.1 栈和队列
- 第10章 10.2 链表
- 第10章 10.3 指针和对象实现
- 第10章 10.4 有根树的表示
- 第11章-散列表
- 第12章 二叉查找树
- 第13章 红黑树
- 第14章 14.1 动态顺序统计
- 算法导论-14-1-最大重叠点
- 算法导论-14-2-Josephus排列
- 第14章 14.3 区间树
- 第15章 动态规划
- 第16章 贪心算法
- 第18章 B树
- 第19章-二项堆
- 第20章 斐波那契堆
- 第21章 用于不相交集合的数据结构
- 第22章 图的基本算法 22.1 图的表示
- 第22章 图算法 22.2 广度优先搜索
- 第22章 图算法 22.3 深度优先搜索
- 第22章 图的基本算法 22.4 拓扑排序
- 第22章 图的基本算法 22.5 强联通分支